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Abstract

Almost all small area estimations are obtained by minimizing the mean squared error. Recently relative

error prediction methods have been developed and adapted to small area estimation. Usually the estimators

obtained by using relative error prediction is called a shrinkage estimator. Especially when data set consists

of large range values, the shrinkage estimator is known as having good statistical properties and an easy

interpretation. In this paper we study the shrinkage estimators based on logistic regression type estimators

for small area estimation. Some simulation studies are performed and the Economically Active Population

Survey data of 2005 is used for comparison.
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1. Introduction

Most sample surveys are designed to produce estimates for a whole geographical area. The sample

sizes of small areas such as cities and counties would be small (even zeros for some areas) because the

overall sample size in a survey is usually determined to provide a specific accuracy at a higher level of

aggregation than that of a small area. In that case, sample proportions such as unemployment rates

in counties may be poorly estimated. Usually survey estimates based on such small sample sizes

could provide formidable standard errors leading to unacceptable confidence intervals. However, a

heavy burden of time and cost occurs in obtaining an acceptable accuracy for the statistic that of

a small area. Therefore, instead of doing the extra survey overcoming the unacceptable accuracy

caused by small sample size, reliable official statistics for the small areas can be produced efficiently

by applying the small area estimation methods.

The small area estimation methods can be classified as design-based and model-based. In general,

when the auxiliary information is available, model-based methods are known better. Especially,

for binary data such as unemployment data, the logistic regression estimator and logistic mixed

estimator are known as having good statistical properties. In addition, the random effects models

that treat each county as a cluster can provide improved estimates. Studies on the logistic regression
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type estimators to estimate unemployment rates can be found in Kim and Choi (2004) and Yeo et

al. (2008).

In this study, we suggest estimators obtained by minimizing relative error(RE) or mean squared

percentage error(MSPE) instead of minimizing MSE. This estimator has the advantage of an easy

calculation obtained by multiplying a certain constant term to the original estimator obtained by

minimizing MSE. The estimator known as a shrinkage estimator was studied by Hwang and Shin

(2008, 2009); however, in those papers, the application of logistic regression estimator and logistic

mixed estimator to small area estimation was not performed in their papers. Hence the applicability

of a shrinkage estimation method to logistic regression type estimators should be studied and the

superiority of shrinkage small area estimators in an aspect of relative error criterion should be

examined.

In this paper we compare the efficiency of each estimator such as direct estimator, logistic regression

estimator, logistic mixed estimator, and the shrinkage type estimators derived from logistic type

estimators. In Section 2, we briefly explain logistic regression type small area estimators which

are practically and widely used for binary data. In addition, the shrinkage estimators made from

the original small area estimators are explained. Section 3 performs the analysis of data using

the estimators mentioned before and the results for comparison of the estimators are shown. For

comparison, we use the unemployment data from the Monthly Report on the Economically Active

Population Survey in Korea (2005). Section 4 includes some concluding remarks.

2. Suggested Methods for Small Area Estimations

In this section, we briefly summarize some small area estimators mentioned in Section 1. Some

widely used estimators for binary data obtained by minimizing MSE are explained and we study

the new shrinkage estimators obtained by using RE.

2.1. Small area estimators using MSE

Some small area estimation methods have been suggested as design-based estimation such as direct

estimation, synthetic estimation, and composite estimation. In addition, the well-known model

based estimations have been suggested such as regression estimation. Empirical Bayes estima-

tion(EB), Hierarchical Bayes estimation(HB). For binary response data, logistic regression type

estimators are widely used. Therefore, in this study, we consider two logistic regression type es-

timators specially used for binary data: the logistic regression estimator and the logistic mixed

estimator. Details on these estimators can be found in Agresti (2002) and Rao (2003).

2.1.1. Direct estimator The direct estimator, ŶDE is defined as ŶDE = Ŷi =
∑

j wijyij where Ŷi

is the estimate of the interesting variable in ith small area, wij , i = 1, . . . , n; j = 1, . . . , ni is the

sampling weight and yij is the value of jth element in ith small area. Usually the sampling weight

wij have the same value in the same stratum. Hence for simplicity, we use wij = 1 for all i and j

throughout this paper. This constant sampling weight does not affect the comparison result of the

estimators’ superiority.

2.1.2. Logistic regression estimator The logistic regression model is defined by following.

log

(
pij(x)

1− pij(x)

)
= β0 + β1x1ij + β2x2ij + · · ·+ βpxpij . (2.1)
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Here pij = P (yij = 1|x1ij , x2ij , . . . , xpij), i = 1, . . . , n; j = 1, . . . , ni and xkij ’s are independent

variables. In addition, we use the common parameters β′
is through the whole areas.

The estimates of the sample proportion, p̂ij are defined as

log

(
p̂ij(x)

1− p̂ij(x)

)
= β̂0 + β̂1x1ij + β̂2x2ij + · · ·+ β̂pxpij , (2.2)

where p̂ij = P̂ (yij = 1|x1ij , x2ij , . . . , xpij) and the estimates of β′
is are easily obtained by using

SAS/GENMOD procedure.

Then the logistic regression small estimator, ŶLOGIT , is defined as

ŶLOGIT = Ŷi =

ni∑
j=1

ŷij =

ni∑
j=1

p̂ij . (2.3)

2.1.3. Logistic mixed estimator The logistic mixed model is defined by following.

log

(
pij(x)

1− pij(x)

)
= β0 + β1x1ij + · · ·+ βpxpij + vi. (2.4)

Here pij = P (yij = 1|x1ij , x2ij , . . . , xpij), i = 1, . . . , n; j = 1, . . . , ni and vi is the random effect

about the differences of small areas. In addition, xkij ’s and βi’s basic assumptions are the same as

those in the logistic regression model.

Then the estimates of the sample proportion, p̂ij are obtained by

log

(
p̂ij(x)

1− p̂ij(x)

)
= β̂0 + β̂1x1ij + · · ·+ β̂pxpij + v̂i (2.5)

and the estimates of β′
is and v′is can be obtained by using SAS/GLIMMIX procedure. Finally the

logistic mixed estimator, ŶLMM , is defined as

ŶLMM = Ŷi =

ni∑
j=1

ŷij =

ni∑
j=1

p̂ij . (2.6)

2.2. Small area estimator using RE

2.2.1. Shrinkage estimator: Ŷ SHŶ SHŶ SH Most of the proposed small area estimation methods have been

obtained by minimizing MSE, which is E(Y − Ŷ )2. It is very ordinary to use this criterion under

the model assumption of homogeneous error variance; however, the homogeneous error variance

sometimes does not provide a reasonable interpretation in terms of the relative error criterion for a

small value of data. In this case, it may be desirable to use the criterion of RE or MSPE instead of

MSE. See more details on RE prediction in Park and Stefanski (1997) and Hwang and Shin (2008,

2009).

The predictor using RE criterion is obtained by

minE

(
Y − g∗

Y

)2

and the best relative error predictor g∗ is defined as:

g∗ =
E(1/Y )

E(1/Y 2)
. (2.7)
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We suppose the following assumptions on mean and variance as in Jeong and Shin (2008).(
Y − µ

µ

)m

= op(1), m = 2, 3, . . . , µ = E(Y ).

Then taking the expectations of the Taylor expansion of Y −k, k = 1, 2, we have the following

results.

E

(
1

Y

)
≈ µ−1 (1 + CV2) , (2.8)

E

(
1

Y 2

)
≈ µ−2 (1 + 3CV2) .

Here CV is a coefficient of variation. By plugging (2.8) into (2.7) we have

E(1/Y )

E(1/Y 2)
≈ µ−1(1 + CV2)

µ−2(1 + 3CV2)
= µ

(1 + CV2)

(1 + 3CV2)
.

Replacing µ with Ŷ , we have the following shrinkage estimator.

Ŷ SH = Ŷ

(
1 + ĈV

2
)

(
1 + 3ĈV

2
) . (2.9)

See more details on derivations in Jeong and Shin (2008) and Hwang and Shin (2009). This formula

shows that Ŷ SH < Ŷ for ĈV
2
> 0. Hence we have the ‘shrinkage estimator’ and we will use this as

a small area estimator. Here ĈV, the estimate of CV = σ/µ can be estimated by s/Ȳ .

2.2.2. Suggested shrinkage estimator In this study, we suggest two shrinkage estimators, logistic

regression shrinkage estimator Ŷ SH
LOGIT , and logistic mixed shrinkage estimator Ŷ SH

LMM , based on

(2.3) and (2.6) with (2.9).

Ŷ SH
LOGIT = ŶLOGIT

(
1 + ĈV

2
)

(
1 + 3ĈV

2
) , Ŷ SH

LMM = ŶLMM

(
1 + ĈV

2
)

(
1 + 3ĈV

2
) . (2.10)

The estimators ŶLOGIT and ŶLMM are easily obtained using SAS. Also estimates of mean and

variance, Ȳ and S2 are calculated in each small area to obtain ĈV. So Ŷ SH
LOGIT , Ŷ

SH
LMM are easily

calculated.

3. Data Analysis and Simulation

For data analysis, we consider three estimators, ŶDE , ŶLOGIT and ŶLMM introduced in Section

2.1; in addition, as the shrinkage estimators, we consider Ŷ SH
LOGIT and Ŷ SH

LMM defined in Section

2.2. However, for comparison, we use four model-based estimators, ŶLOGIT , ŶLMM , Ŷ SH
LOGIT and

Ŷ SH
LMM .

3.1. Data analysis

In this paper, we use the unemployment data from the Monthly Report on the Economically Active

Population Survey in Korea (2005) to compare the efficiency of shrinkage estimators and the others.
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Table 3.1. Estimates of the total number of unemployed persons

area code ŶDE ŶLOGIT ŶLMM Ŷ SH
LOGIT Ŷ SH

LMM

31011 11674 4826 5610 4623 4535

31012 4746 5983 5744 5786 5118

31013 4542 4387 4455 4232 3870

31021 7466 6394 6423 6175 5585

31022 4967 6266 5993 6062 5307

31023 3330 5218 5028 4983 4369

31030 10888 8706 9071 8449 7950

31041 6463 5266 5347 5110 4699

31042 8695 5363 5631 5180 4770

31051 3281 9244 8354 8945 7272

31052 2129 4279 3995 4091 3555

31053 3523 3859 3742 3703 3199

31060 12383 6786 7637 6581 6611

31070 11346 7492 8493 7310 7683

31080 4097 1833 1981 1728 1567

31090 16319 12154 12392 11807 10969

31101 7272 7392 7396 7157 6397

31102 12135 9249 9757 8998 8505

31110 412 671 648 637 563

31120 2776 4316 4112 4141 3617

31130 6175 11637 10230 11391 9077

31140 1954 2538 2478 2448 2161

31150 5417 7489 7524 7216 6477

31170 1502 3105 2958 2974 2618

31180 4431 3252 3336 3084 2756

31190 14817 13664 13928 13387 12713

31200 4638 4672 4668 4476 3903

31210 1289 3199 3010 3080 2661

31220 2859 2690 2670 2582 2254

31230 1979 3618 3444 3491 3070

31240 2795 6355 5847 6141 5114

31260 2893 3990 3863 3836 3381

31270 3326 2965 2960 2843 2558

31380 1318 1390 1332 1326 1135

Some small areas having all “0” values of the interesting variable are excluded in this analysis.

Therefore, the final data used in this analysis consists of 34 small areas and 4916 observations.

We calculate the sample means and variances in each small area with given samples and obtain

the shrinkage estimators. The data set consists of binary response values such as “employed or

not”, and the explanatory variable such as administrative district code, gender, level of education,

age, and type of housing. Since two variables, level of education(X1) and age(X2) are statistically

significant, we include these two variables as explanatory variables. For 34 small areas, we calculate

five small area estimators, ŶDE , ŶLOGIT , ŶLMM , Ŷ SH
LOGIT and Ŷ SH

LMM with whole data. The results

of estimates are shown in Table 3.1.

As mentioned before, the data-based estimator, ŶDE is an unbiased estimator; however, it has a

large variance. In several small areas, the estimated values of ŶDE are quite different from the other

model based estimates. Especially in small areas coded by 31022, 31060, 31070, ŶDE has larger

values than the others. On the contrary, in small areas coded by 31023, 31052, 31120, 31210, the



450 Hee-Jin Hwang, Key-Il Shin

Table 3.2. Correlation results with ŶDE

ŶLOGIT ŶLMM Ŷ SH
LOGIT Ŷ SH

LMM

correlation coefficient 0.75259 0.83137 0.75270 0.82156

results are reversed. The comparison of ŶLOGIT with Ŷ SH
LOGIT shows that all estimates of ŶLOGIT

are larger than Ŷ SH
LOGIT as expected. The comparison between ŶLMM and Ŷ SH

LMM shows the same

phenomena.

In addition, since practically we have no true values of small areas, the comparison of each estimators

can be conducted by using the comparison statistics such as regression methods, coverage and

calibration. These practically used comparison statistics are studied by Brown et al. (2001). In this

study, instead of using those comparison statistics, we simply calculate simple correlation coefficients

between ŶDE and the other estimators in order to check closeness to ŶDE . The results are shown

in Table 3.2 and show that ŶLMM is better than ŶLOGIT . The shrinkage estimators corresponding

to the original estimators have almost the same correlation coefficients.

3.2. Simulations

In order to compare the efficiency of these estimators, we conduct a small simulation study. First

we select samples without replacement from the whole samples with sample size 2,000, 3,000 and

4,000. We replicate 1,000 times to obtain the comparison statistics. For comparison, five comparison

statistics are used. These are Mean Squared Error(MSE), Relative Mean Squared Error(RMSE),

Mean Absolute Error(MAE), Absolute Relative Error(ARE), and Relative Bias(RB). Details about

these comparison statistics are presented in Rao (2003). Here, Yi is the true value for small area i,

and each estimate of Yi is Ŷi.

MSE =
1

nR

R∑
r=1

n∑
i=1

(
Ŷi,r − Yi

)2
, RMSE =

1

nR

R∑
r=1

n∑
i=1

(
Ŷi,r − Yi

Yi

)2

,

MAE =
1

nR

R∑
r=1

n∑
i=1

∣∣∣Ŷi,r − Yi

∣∣∣ , ARE =
1

nR

R∑
r=1

n∑
i=1

∣∣∣∣∣ Ŷi,r − Yi

Yi

∣∣∣∣∣ ,
RB =

1

nR

R∑
r=1

n∑
i=1

(
Ŷi,r − Yi

)
Yi

.

Here n = 34 is the number of small areas and R = 1,000 is the number of replications. To use

the above statistics, we need to know the true values, Yi, i, . . . , n in each small area. However

practically we have no true values. So in this simulation, we just assume that the estimates of total

in each small area obtained using ŶDE with the whole data as the true values shown in Table 3.1.

This is the same way used in Hwang and Shin (2009). The comparison results of estimators are

tabulated from Table 3.3 to Table 3.5. Here we drop ŶDE in this comparison since only ŶDE is a

design-based estimator. Notice that MSE and MAE are the statistics about the size of error with

RMSE and ARE as the statistics about the size of relative error.

From Table 3.3 to Table 3.5, we have the following results. As expected, values of MSE and MAE of

shrinkage estimators, Ŷ SH
LOGIT and Ŷ SH

LMM are larger than those of ŶLOGIT and ŶLMM respectively.

However, for RMSE and ARE, the values of shrinkage estimators, Ŷ SH
LOGIT and Ŷ SH

LMM have reverse

results. Specially, note that for MSE, ŶLOGIT and Ŷ SH
LOGIT have almost the same results whereas
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Table 3.3. Results on comparison statistics with sample size 2,000

MSE RMSE MAE ARE RB(%)

ŶLOGIT 8961892 0.490 2216 0.499 0.232

ŶLMM 7681710 0.347 2004 0.428 0.161

Ŷ SH
LOGIT 8972775 0.432 2203 0.475 0.178

Ŷ SH
LMM 8317045 0.257 2055 0.39 0.012

Table 3.4. Results on comparison statistics with sample size 3,000

MSE RMSE MAE ARE RB(%)

ŶLOGIT 8472503 0.468 2164 0.491 0.238

ŶLMM 6432409 0.273 1814 0.383 0.134

Ŷ SH
LOGIT 8554284 0.393 2153 0.459 0.167

Ŷ SH
LMM 7418413 0.207 1917 0.356 −0.020

Table 3.5. Results on comparison statistics with sample size 4,000

MSE RMSE MAE ARE RB(%)

ŶLOGIT 8149336 0.448 2126 0.483 0.236

ŶLMM 5566040 0.222 1678 0.348 0.106

Ŷ SH
LOGIT 8210022 0.393 2119 0.459 0.182

Ŷ SH
LMM 6403534 0.171 1772 0.326 −0.038

Figure 3.1. MSE results

for RMSE, the difference is large. In addition, ŶLMM and Ŷ SH
LMM provide the best results in all

comparison criteria. For checking unbiasedness, RB is considered and Ŷ SH
LMM shows the best results.

The results show that shrinkage estimators have some bias; however, the values are not large. The

shrinkage estimators are shown to produce better results in RB than the corresponding original

estimators.

To investigate the trend of magnitude of errors as sample sizes increase, we draw figures of MSE,

RMSE, and RB.

From Figure 3.1 and Figure 3.2, the results on MSE and RMSE, we find that as the sample size

increases, ŶLMM and Ŷ SH
LMM quickly reduce the magnitude of errors and magnitude of relative errors

relatively to ŶLOGIT and Ŷ SH
LOGIT . Figure 3.3, the results on RB, shows that even though Ŷ SH

LMM

provide good results, four estimators do not reduce the relative bias as sample size increases.

4. Conclusion

For the small area estimation of binary response data such as un-employment, logistic regression

estimator and logistic mixed estimator are widely used as they have some good statistical proper-
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Figure 3.2. RMSE results

Figure 3.3. RB results

ties. These estimators are obtained by minimizing MSE. However, relative error criterion should

be considered and applied to obtain the better small area estimation in some cases where the in-

terpretation of analysis results is considered as a primary interest rather than the precision of the

estimator.

In this paper we study logistic regression type shrinkage estimators obtained by minimizing RE

and compare them with logistic regression and logistic mixed estimators. Comparison results based

on MSE show that ŶLMM is superior to any other estimators including ŶLOGIT . However Ŷ SH
LMM

shows the best results in RMSE criterion. Therefore we conclude that two small area estimators,

ŶLMM and Ŷ SH
LMM provide the best results according to proper situations. If an analyst concludes

that MSE is a more important criterion than RE, ŶLMM should be used; however, in the opposite

case, Ŷ SH
LMM should be used.
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