• Title/Summary/Keyword: Logic tree

Search Result 131, Processing Time 0.024 seconds

An Analysis of Human Reliability Represented as Fault Tree Structure Using Fuzzy Reasoning (Fault Tree구조로 나타낸 인간신뢰성의 퍼지추론적해석)

  • 김정만;이동춘;이상도
    • Proceedings of the ESK Conference
    • /
    • 1996.04a
    • /
    • pp.113-127
    • /
    • 1996
  • In Human Reliability Analysis(HRA), the uncertainties involved in many factors that affect human reliability have to be represented as the quantitative forms. Conventional probability- based human reliability theory is used to evaluate the effect of those uncertainties but it is pointed out that the actual human reliability should be different from that of conventional one. Conventional HRA makes use of error rates, however, it is difficult to collect data enough to estimate these error rates, and the estimates of error rates are dependent only on engineering judgement. In this paper, the error possibility that is proposed by Onisawa is used to represent human reliability, and the error possibility is obtained by use of fuzzy reasoning that plays an important role to clarify the relation between human reliability and human error. Also, assuming these factors are connected to the top event through Fault Tree structure, the influence and correlation of these factors are measured by fuzzy operation. When a fuzzy operation is applied to Fault Tree Analysis, it is possible to simplify the operation applying the logic disjuction and logic conjuction to structure function, and the structure of human reliability can be represented as membership function of the top event. Also, on the basis of the the membership function, the characteristics of human reliability can be evaluated by use of the concept of pattern recognition.

  • PDF

Development of Automatic Fault Tree Construction System using Digraph (Digraph를 이용한 Fault Tree 자동합성시스템의 개발)

  • Jung, Won-Seok;Lee, Geun-Won;Moon, Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.393-393
    • /
    • 2000
  • FTA(Fault Tree Analysis) is a safety analysis method that focuses on one particular accident or main system failure and provides a method of determining causes of that event. While most of the statistical and cut set analysis have been automated, actual construction of the fault-tree is usually done manually. Manual construction of the fault-tree is extremely time consuming and it requires high level of expertise and experience. In addition to the time involved, different analyst often produces different fault-trees either by incorrect logic or omission of certain events. Automatic fault-tree construction system can be efficient in solving above problems. This study presents a new Digraph-FT conversion algorithm that leads automatic FTA system.

  • PDF

Representation of Temporal Logic Framework Using Petri Net (Petri Net을 이용한 시간논리 구조의 표현)

  • Kim, Jung-Chul;Mo, Young-Seung;Kim, Jin-Kwon;Hwang, Hyung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2000.11d
    • /
    • pp.615-617
    • /
    • 2000
  • Temporal Logic Frameworks is convenient to represent temporal relation. It is useful to represent a dynamic properties of Discrete Event Dynamic Systems. Also, it is convenient to express a current and next state of event using logical representation. Because the teachability tree of the Temporal Logic Frameworks is very complexity it is difficult to understand. In this paper, we defined some rules to represent Temporal Logic Frameworks by Petri Net and proposed am method of the representation of them Petri Net for the Temporal Logic Frameworks. An example are used to demonstrate the feasibility of this method.

  • PDF

A data structure and algorithm for MOS logic-with-timing simulation (MOS 로직 및 타이밍 시뮬레이션을 위한 데이타구조 및 알고리즘)

  • 공진흥
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.6
    • /
    • pp.206-219
    • /
    • 1996
  • This paper describes a data structure and evaluation algorithm to improve the perofmrances MOS logic-with-timing simulation in computation and accuracy. In order to efficiently simulate the logic and timing of driver-load networks, (1) a tree data structure to represent the mutual interconnection topology of switches and nodes in the driver-lod network, and (2) an algebraic modeling to efficiently deal with the new represetnation, (3) an evaluation algorithm to compute the linear resistive and capacitive behavior with the new modeling of driver-load networks are developed. The higher modeling presented here supports the structural and functional compatibility with the linear switch-level to simulate the logic-with-timing of digital MOS circuits at a mixed-level. This research attempts to integrate the new approach into the existing simulator RSIM, which yield a mixed-klevel logic-with-timing simulator MIXIM. The experimental results show that (1) MIXIM is a far superior to RSIM in computation speed and timing accuracy; and notably (2) th etiming simulation for driver-load netowrks produces the accuracy ranged within 17% with respect ot the analog simulator SPICE.

  • PDF

PSN: A Dynamic Numbering Scheme for W3C XQuery Update Facility

  • Hong, Dong-Kweon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.2
    • /
    • pp.121-125
    • /
    • 2008
  • It is essential to maintain hierarchical information properly for efficient XML query processing. Well known approach to represent hierarchical information of XML tree is assigning a specific node number to each node of XML tree. Insertion and deletion of XML node can occur at any position in a dynamic XML tree. A dynamic numbering scheme allows us to add nodes to or delete nodes from an XML tree without relabeling or with relabeling only a few existing nodes of XML tree while executing XML query efficiently. According to W3C XQuery update facility specifications a node can be added as first or last child of the existing node in XML tree. Generating new number for last child requires referencing the number of previous last child. Getting the number of last child is very costly with previous approaches. We have developed a new dynamic numbering scheme PSN which is very effective for insertion of a node as last child. Our approach reduces the time to find last child dramatically by removing sorting of children.

Multiple-Valued Logic Multiplier for System-On-Panel (System-On-Panel을 위한 다치 논리 곱셈기 설계)

  • Hong, Moon-Pyo;Jeong, Ju-Young
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.2
    • /
    • pp.104-112
    • /
    • 2007
  • We developed a $7{\times}7$ parallel multiplier using LTPS-TFT. The proposed multiplier has multi-valued logic 7-3 Compressor with folding, 3-2 Compressor, and final carry propagation adder. Architecture minimized the carry propagation. And power consumption reduced by switching the current source to the circuit which is operated in current mode. The proposed multiplier improved PDP by 23%, EDP by 59%, and propagation delay time by 47% compared with Wallace Tree multiplier.

Efficient Multi-way Tree Search Algorithm for Huffman Decoder

  • Cha, Hyungtai;Woo, Kwanghee
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.1
    • /
    • pp.34-39
    • /
    • 2004
  • Huffman coding which has been used in many data compression algorithms is a popular data compression technique used to reduce statistical redundancy of a signal. It has been proposed that the Huffman algorithm can decode efficiently using characteristics of the Huffman tables and patterns of the Huffman codeword. We propose a new Huffman decoding algorithm which used a multi way tree search and present an efficient hardware implementation method. This algorithm has a small logic area and memory space and is optimized for high speed decoding. The proposed Huffman decoding algorithm can be applied for many multimedia systems such as MPEG audio decoder.

Application of Reliability Centered Maintenance Strategy to Safety Injection System for APR1400

  • Rezk, Osama;Jung, JaeCheon;Lee, YongKwan
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.12 no.1
    • /
    • pp.41-58
    • /
    • 2016
  • Reliability Centered Maintenance (RCM) introduces a systematic method and decision logic tree for utilizing previous operating experience focused on reliability and optimization of maintenance activities. In this paper RCM methodology is applied on safety injection system for APR-1400. Functional Failure Mode Effects and Criticality Analysis (FME&CA) are applied to evaluate the failure modes and the effect on the component, system and plant. Logic Tree Analysis (LTA) is used to determine the optimum maintenance tasks. The results show that increasing the condition based maintenance will reduce component failure and improve reliability and availability of the system. Also the extension of the surveillance test interval of Safety Injection Pumps (SIPs) would lead to an improved pump's availability, eliminate the unnecessary maintenance tasks and this will optimize maintenance activities.

Design and Simulation of Edge Painting Machine for Image Rasterization (Image rasterization을 위한 Edge Painting Machine의 설계 및 simulation)

  • Choi, Sang-Gil;Kim, Sung-Soo;Eo, Kil-Su;Kyung, Chong-Min
    • Proceedings of the KIEE Conference
    • /
    • 1987.07b
    • /
    • pp.1492-1494
    • /
    • 1987
  • This paper describes a hardware architecture called Edge Painting Machine for real time generation of scan line images for raster scan graphics display. The Edge Painting Machine consists of Scanline Processor which converts polygon data sorted in their depth priority into a set of scan line commands for each scan line, and Edge Painting Tree which converts the scanline commands set into a raster line image. Edge painting tree has been designed using combinational logic circuit. The designed circuit has been simulated to verify the proper functioning. A salient feature of the EPT is that hardware composition is simple, because each processor is constituted by only combinational logic circuit.

  • PDF