• 제목/요약/키워드: Logic Simulation

검색결과 1,441건 처리시간 0.027초

낮은 Subthreshold 누설전류를 갖는 CMOS 논리회로 (CMOS Logic Circuits with Lower Subthreshold Leakage Current)

  • 송상헌
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제53권10호
    • /
    • pp.500-504
    • /
    • 2004
  • We propose a new method to reduce the subthreshold leakage current. By moving the operating point of OFF state MOSFETs through input-controlled voltage generators, logic circuits with much lower leakage current can be built with few extra components. SPICE simulation results for the new inverter show correct logic results without speed degradation compared to a conventional inverter.

퍼지논리를 이용한 로봇 매니퓰레이터의 다변수제어 (Multivariable control of robot manipulators using fuzzy logic)

  • 이현철;한상완;홍석교
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.490-493
    • /
    • 1996
  • This paper presents a control scheme for the motion of a 2 DOF robot manipulator. Robot manipulators are multivariable nonlinear systems. Fuzzy logic is avaliable human-like control without complex mathematical operation and is suitable to nonlinear system control. In this paper, Implementation of fuzzy logic control of robotic manipulators shows. Algorithm has been performed with simulation packages MATRIXx and SystemBuild.

  • PDF

보일러 터빈 플랜트의 퍼지 논리 제어에 관한 연구 (A study on the fuzzy logic control for boiler-turbine system)

  • 김호동;김용호;안상철;권욱현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.687-692
    • /
    • 1991
  • To reduce the complexity in constructing a fuzzy logic controller of multivariable systems, three major methods are presented. One is the method of constructing single-input-single-output fuzzy logic controllers after decoupling the target system. Another is the method of using fuzzy relation matrices which indicate the relation between each input and output. The other is the method of using the hierarchically classified inputs which dominantly influence one output than other inputs. Using the last two methods, simulation results of fuzzy logic controller implemented on 160MW boiler-turbine plant model are also shown.

  • PDF

삽입 작업에서 퍼지추론에 의한 비젼 및 힘/토오크 센서의 퓨젼 (Vision and force/torque sensor fusion in peg-in-hole using fuzzy logic)

  • 이승호;이범희;고명삼;김대원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.780-785
    • /
    • 1992
  • We present a multi-sensor fusion method in positioning control of a robot by using fuzzy logic. In general, the vision sensor is used in the gross motion control and the force/torque sensor is used in the fine motion control. We construct a fuzzy logic controller to combine the vision sensor data and the force/torque sensor data. Also, we apply the fuzzy logic controller to the peg-in-hole process. Simulation results uphold the theoretical results.

  • PDF

자전 안정화 플랫트폼 위치제어용 퍼지 논리 제어기 설계 (The design of a fuzzy logic controller for the pointing loop of the spin-stabilized platform)

  • 유인억;이상정
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.112-116
    • /
    • 1992
  • In this paper, a fuzzy logic controller(FLC) is designed for the pointing loop of the spin-stabilized platform. For the fuzzy inference, a fuzzy accelerator board using the Togai InfraLogic software and digital fuzzy processor(DFP110FC) is designed, and a validation of an algorithm for fuzzy logic control is also presented. The pointing loop of the spin-stabilized platform using FLC has better performance of step responses than a proportional controller in case of same loop hain through the software simulation and the experiment of implemented hardware.

  • PDF

TCMS에 의한 전동차 추진/제동 제어기법 (A Study of Train Powering/Braking Control by TCMS)

  • 한정수;박성호;김국진;박계서
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1999년도 춘계학술대회 논문집
    • /
    • pp.291-298
    • /
    • 1999
  • TCMS(Train Control & Management System) is the management system of train information which intensively control, monitor and test the main on-board equipments including propulsion/brake unit by the serial transmission line. TCMS reduces interface circuits and number of train lines by the software logic and utilizing serial communication method. This paper describes the method of powering and braking control by TCMS software logic, in comparison with the powering/braking control by conventional relay logic/hardwire circuits, and the software logic was verified by simulation test with TCMS simulator.

  • PDF

자전 안정화 플랫트폼 위치제어용 퍼지 논리제어기 설계 (A Fuzzy Logic Controller Design for the Pointing Loop of the Spin-Stabilized Platform)

  • 유인억;김병연;이상정
    • 전자공학회논문지B
    • /
    • 제30B권4호
    • /
    • pp.56-66
    • /
    • 1993
  • In this paper, a fuzzy logic controll(FLC) is designed for the pointing loop of the spinstabilized platform. For the fuzzy inference, a fuzzy accelerator board using the Togai InfraLogic software and digital fuzzy processor(DFP110FC) is designed, and a validation of an algorithm for fuzzy logic control is also presented. Through the simulation and the experiment, it can be seen that the designed FLC shows better performance than a conventional controller using the same loop gain.

  • PDF

퍼지논리 제어에 의한 CNC 서보기구의 마찰보정에 관한 연구 (A Study on the Friction Compensation in CNC Servomechanisms by Fuzzy Logic Control)

  • 지성철
    • 한국정밀공학회지
    • /
    • 제15권9호
    • /
    • pp.56-67
    • /
    • 1998
  • This paper introduces a friction compensation fuzzy logic controller, which utilizes a rule-based approach. The paper explains the algorithm of the proposed controller and compares it with a conventional PID controller in simulations and experiments. For the experiments, the two control algorithms were implemented on a 3-axis milling machine in contour milling. These simulation and experimental analyses show that the proposed fuzzy logic controller has superior performance over conventional PID controllers In terms of part contour accuracy.

  • PDF

Fuzzy logic을 利用한 交通 信號 control system (Traffic signal control system using fuzzy logic)

  • 文珠永;李尙培
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1996년도 추계학술대회 학술발표 논문집
    • /
    • pp.180-183
    • /
    • 1996
  • This work discusses simulation results for the fuzzy logic controller tested the project“Fuzzy Ramp Metering Algorithm Implementation.”The performance objectives were, in order of priority, to maximize total vehicle-miles, maximize mainline speeds, and minimize delay per vehicle while maintaining an acceptable ramp queue. In the fuzzy logic controller, the sensors from the on-ramps were helpful in maintaining reasonable ramp queue and mainline congestion because it considered these factors simultaneously. Each metered ramp had a parameter input file, which allowed the controller to be modified without recompiling the software. Consequently, maintenance costs should be minimal.

  • PDF

TCS(Traction Control System)을 위한 실시간 시뮬레이터 개발에 관한 연구 (A Study on Development of Real-Time Simulator for Electric Traction Control System)

  • 김태운;천세영;양순용
    • 드라이브 ㆍ 컨트롤
    • /
    • 제16권3호
    • /
    • pp.67-74
    • /
    • 2019
  • The automotive market has recently been investing much time and costs in improving existing technologies such as ABS (Anti-lock Braking System) and TCS (Traction Control System) and developing new technologies. Additionally, various methods have been applied and developed to reduce this. Among them, the development method using the simulation has been mainly used and developed. In this paper, we have studied a method to develop SILS (Software In the Loop Simulation) for TCS which can test various environment variables under the same conditions. We modeled hardware (vehicle engine and ABS module) and software (control logic) of TCS using MATLAB/Simulink and Carsim. Simulation was performed on the climate, road surface, driving course, etc. to verify the TCS logic. By using SILS to develop TCS control logic and controller, it is possible to verify before production and reduce the development period, manpower and investment costs.