• Title/Summary/Keyword: Logic Rules

Search Result 481, Processing Time 0.026 seconds

An Algorithmic approach for Fuzzy Logic Application to Decision-Making Problems (결정 문제에 대한 퍼지 논리 적용의 알고리즘적 접근)

  • 김창종
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.2
    • /
    • pp.3-15
    • /
    • 1997
  • In order to apply fuzzy logic, two major tasks need to be performed: the derivation of fuzzy rules and the determination of membership functions. These tasks are often difficult and time-consuming. This paper presents an algorithmic method for generating membership functions and fuzzy rules applicable to decision-making problems; the method includes an entropy minimization for clustering analog samples. Membership functions are derived by partitioning the variables into desired number of fuzzy terms, and fuzzy rules are obtained using minimum entropy clustering. In the mle derivation process, rule weights are also calculated. Inference and defuzzification for classification problems are also discussed.

  • PDF

A Study on the Hybrid Data Mining Mechanism Based on Association Rules and Fuzzy Neural Networks (연관규칙과 퍼지 인공신경망에 기반한 하이브리드 데이터마이닝 메커니즘에 관한 연구)

  • Kim Jin Sung
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2003.05a
    • /
    • pp.884-888
    • /
    • 2003
  • In this paper, we introduce the hybrid data mining mechanism based in association rule and fuzzy neural networks (FNN). Most of data mining mechanisms are depended in the association rule extraction algorithm. However, the basic association rule-based data mining has not the learning ability. In addition, sequential patterns of association rules could not represent the complicate fuzzy logic. To resolve these problems, we suggest the hybrid mechanism using association rule-based data mining, and fuzzy neural networks. Our hybrid data mining mechanism was consisted of four phases. First, we used general association rule mining mechanism to develop the initial rule-base. Then, in the second phase, we used the fuzzy neural networks to learn the past historical patterns embedded in the database. Third, fuzzy rule extraction algorithm was used to extract the implicit knowledge from the FNN. Fourth, we combine the association knowledge base and fuzzy rules. Our proposed hybrid data mining mechanism can reflect both association rule-based logical inference and complicate fuzzy logic.

  • PDF

Design and Analysis of Interval Type-2 Fuzzy Logic System (Interval Type-2 Fuzzy논리 집합의 설계 및 분석)

  • Kim, Dae-Bok;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2008.04a
    • /
    • pp.155-156
    • /
    • 2008
  • In this paper, an interval type-2 fuzzy logic system is designed and compared with a type-1 fuzzy logic system. To compare performance of a type-1 fuzzy logic system with the type-2 fuzzy logic system, we apply type-1 fuzzy logic system and type-2 system to modeling the noised data. Membership function of interval type-2 fuzzy logic system is designed consequents of rules including uncertainty. For general type-2 fuzzy logic system computational complexity is severe. On the other hand, theoretic and arithmetic computations for interval type-2 fuzzy logic systems are very simple.

  • PDF

Self-organizing fuzzy controller using data base (데이타 베이스를 이용한 자기 구성 퍼지 제어기)

  • 윤형식;이평기;전기준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.579-583
    • /
    • 1991
  • A fuzzy logic controller with rule modification capability is proposed to overcome the difficulty of obtaining control rules from the human operators. This new SOC algorithm modifies control rules by a fuzzy inference machine utilizing data base. Computer simulation results show good performances on both a linear system and a nonlinear system.

  • PDF

Design of Optimal Fuzzy Logic based PI Controller using Multiple Tabu Search Algorithm for Load Frequency Control

  • Pothiya Saravuth;Ngamroo Issarachai;Runggeratigul Suwan;Tantaswadi Prinya
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.2
    • /
    • pp.155-164
    • /
    • 2006
  • This paper focuses on a new optimization technique of a fuzzy logic based proportional integral (FLPI) load frequency controller by the multiple tabu search (MTS) algorithm. Conventionally, the membership functions and control rules of fuzzy logic control are obtained by trial and error method or experiences of designers. To overcome this problem, the MTS algorithm is proposed to simultaneously tune proportional integral gains, the membership functions and control rules of a FLPI load frequency controller in order to minimize the frequency deviations of the interconnected power system against load disturbances. The MTS algorithm introduces additional techniques for improvement of the search process such as initialization, adaptive search, multiple searches, crossover and restart process. Simulation results explicitly show that the performance of the proposed FLPI controller is superior to conventional PI and FLPI controllers in terms of overshoot and settling time. Furthermore, the robustness of the proposed FLPI controller under variation of system parameters and load change are higher than that of conventional PI and FLPI controllers.

The Design and Simulation of a Fuzzy Logic Sliding Mode Controller (FLSMC) and Application to an Uninterruptible Power System Control

  • Phakamach, Phongsak;Akkaraphong, Chumphol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.389-394
    • /
    • 2004
  • A Fuzzy Logic Sliding Mode Control or FLSMC for the uninterruptible power system (UPS) is presented, which is tracking a sinusoidal ac voltage with specified frequency and amplitude. The FLSMC algorithm combines feedforward strategy with the Variable Structure Control (VSC) or Sliding Mode Control (SMC) and fuzzy logic control. The control function is derived to guarantee the existence of a sliding mode. FLSMC has an advantage that the stability of FLSMC can be proved easily in terms of VSC. Furthermore, the rules of the proposed FLSMC are independent of the number of system state variables because the input of the suggested controller is fuzzy quantity sliding surface value. Hence the rules of the proposed FLSMC can be reduced. The simulation results illustrate that the purposed approach gives a significant improvement on the tracking performances. It has the small overshoot in the transient and the smaller chattering in the steady state than the conventional VSC. Moreover, its can achieve the requirements of robustness and can supply a high-quality voltage power source in the presence of plant parameter variations, external load disturbances and nonlinear dynamic interactions.

  • PDF

Development of an Automatic Nutrient-Solution Supply System Using Fuzzy Control (퍼지제어를 이용한 양액 자동공급 시스템 개발)

  • 황호준;류관희;조성인;이규철;김기영
    • Journal of Biosystems Engineering
    • /
    • v.23 no.4
    • /
    • pp.365-372
    • /
    • 1998
  • This study was carried out to develop a nutrient-solution mixing-and-supplying system, which used a low-cost metering device instead of expensive metering pumps and a fuzzy logic controller. A low cost and precise overflow-type metering device was developed and evaluated by testing the flow discharge for the automatic nutrient-solution mixing-and-supplying system for snail-scale hydroponic sewers. The fuzzy logic controllers, which could predict and meet the desired values of EC and supply rate of nutrient solution were developed and verified by simulation and experiment. this fuzzy logic controller, whose algorithm consists of four crisp inputs, two crisp outputs and nine rules, was developed to predict the desired value of EC and supply rate of nutrient solution and two crisp inputs, one crisp output and nine rules used to control EC to the desired values. The nutrient-solution mixing-and-supplying system showed satisfactory EC control performance with the maximum overshooting of 0.035 mS/cm and the maximum settling time of 15 minutes in case of increasing 0.7 mS/cm. also, the accuracy of the overflow-type metering device in terms of the full-scale error was 2.29% when using solenoid valve only and 0.2% when using solenoid valve and flow control valve together.

  • PDF

Intelligent Navigation Algorithm for Mobile Robots based on Optimized Fuzzy Logic (최적화된 퍼지로직 기반 이동로봇의 지능주행 알고리즘)

  • Zhao, Ran;Lee, Hong-Kyu
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.440-445
    • /
    • 2018
  • The work presented in this paper deals with a navigation problem for a multiple mobile robots in unknown dynamic environments. The environments are completely unknown to the robots; thus, proximity sensors installed on the robots' bodies must be used to detect information about the surroundings. In order to guide the robots along collision-free paths to reach their goal positions, a navigation method based on a combination of primary strategies has been developed. Most of these strategies are achieved by means of fuzzy logic controllers, and are uniformly applied in every robot. In order to improve the performance of the proposed fuzzy logic, the genetic algorithms were used to evolve the membership functions and rules set of the fuzzy controller. The simulation experiments verified that the proposed method effectively addresses the navigation problem.

A method of converting fuzzy system into 2 layered hierarchical fuzzy system (퍼지 시스템의 2계층 퍼지 시스템으로의 변환 방법)

  • Joo Moon-G.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.3
    • /
    • pp.303-308
    • /
    • 2006
  • To solve the rule explosion problem in multi input fuzzy logic system, a method of converting a given fuzzy system to 2 layered hierarchical fuzzy system is presented where the collection of the THEN-parts of the fuzzy rules of given fuzzy system is considered as vectors of fuzzy rule. At the 1 st layer, linearly independent fuzzy rule vectors generated from the given fuzzy logic system are used and, at the 2nd layer, linear combinations of these independent fuzzy rule vectors are used for fuzzy logic units at each layer. The resultant 2 layered hierarchical fuzzy system has not only equivalent approximation capability, but less number of fuzzy rules compared with the conventional fuzzy logic system.

Simple Fuzzy Rule Based Edge Detection

  • Verma, O.P.;Jain, Veni;Gumber, Rajni
    • Journal of Information Processing Systems
    • /
    • v.9 no.4
    • /
    • pp.575-591
    • /
    • 2013
  • Most of the edge detection methods available in literature are gradient based, which further apply thresholding, to find the final edge map in an image. In this paper, we propose a novel method that is based on fuzzy logic for edge detection in gray images without using the gradient and thresholding. Fuzzy logic is a mathematical logic that attempts to solve problems by assigning values to an imprecise spectrum of data in order to arrive at the most accurate conclusion possible. Here, the fuzzy logic is used to conclude whether a pixel is an edge pixel or not. The proposed technique begins by fuzzifying the gray values of a pixel into two fuzzy variables, namely the black and the white. Fuzzy rules are defined to find the edge pixels in the fuzzified image. The resultant edge map may contain some extraneous edges, which are further removed from the edge map by separately examining the intermediate intensity range pixels. Finally, the edge map is improved by finding some left out edge pixels by defining a new membership function for the pixels that have their entire 8-neighbourhood pixels classified as white. We have compared our proposed method with some of the existing standard edge detector operators that are available in the literature on image processing. The quantitative analysis of the proposed method is given in terms of entropy value.