다항식 인수분해 문제는 정수론에서 뿐만 아니라 Discrete logarithm과 관련하여 암호학의 응용에도 중요한 문제이다. Hensel의 Lifting Lemma를 이용하여 유한체위에서 다항식을 인수분해하여 정수계수위에서 다항식의 인수를 찾는 방법으로 정수계수위에서 다항식의 인수분해를 실행하였다.
차수가 h인 다항식 ${\hbar}(x){\in}F_q[x]$에서, $x-s_1,\;x-s_2,\;{\cdots},\;x-s_n$에 의해 생성된 $\(F_q[x]/({\hbar(x))\)*$의 multiplicative subgroup의 크기를 결정하는 것은 대단히 중요한 과제이다. 여기서 $\{s_1,\;s_2,\;{\cdots},\;s_n\}{\sebseteq}F_q$이고 모든 i 에 대해서, ${\hbar}(x){\neq}0$이다. 지금까지 알려진 asymptotic lower bound는 $(rh)^{O(1)}\(2er+O(\frac{1}{r})\)^h$이며, 여기서 $r=\frac{n}{h}$이고 e(=2.718...)는 natural logarithm의 기저이다. 본 논문에서는, coding theory 문제와 연계해서 더 낳은 lower bound인 $(rh)^{O(1)}\(2er+{\frac{e}{2}}{\log}r-{\frac{e}{2}}{\log}{\frac{e}{2}}+O{(\frac{{\log}^2r}{r})}\)^h$를 증명하고자 한다. 여기서 log는natural logarithm을 나타내며, 또한 이방식의 제약점에 대해서도 논의한다.
In this study, the flexural fatigue performance of concrete beams made with 100% Coarse Recycled Concrete Aggregates (RCA) and 100% Coarse Natural Aggregates (NA) were statistically commanded. For this purpose, the experimental fatigue test results of earlier researcher were investigated using two parameter Weibull distribution. The shape and scale parameters of Weibull distribution function was evaluated using seven numerical methods namely, Graphical method (GM), Least-Squares (LS) regression of Y on X, Least-Squares (LS) regression of X on Y, Empherical Method of Lysen (EML), Mean Standard Deviation Method (MSDM), Energy Pattern Factor Method (EPFM) and Method of Moments (MOM). The average of Weibull parameters was used to incorporate survival probability into stress (S)-fatigue life (N) relationships. Based on the Weibull theory, as single and double logarithm fatigue equations for RCA and NA under different survival probability were provided. The results revealed that, by considering 0.9 level survival probability, the theoretical stress level corresponding to a fatigue failure number equal to one million cycle, decreases by 8.77% (calculated using single-logarithm fatigue equation) and 6.62% (calculated using double logarithm fatigue equation) in RCA when compared to NA concrete.
This article on environmental noise qualify is concerned with the relationships between the annoyance and perception and sound quality metrics according to exposition time for traffic noise. For invested the characteristics of noise quality, we conducted to the subjective experiments of the annoyance response using the absolute 100 scaling method for the traffic noise sources. The traffic noise sources are composed to varieties exposition time from 15sec to 1200sec. As the results, the first there are decreased the perception loud level for the increase of exposition time with logarithm scale, but increased the annoyance. Second, evaluation index of annoyance is correlated to the loudness(sones), tonality and logarithm scale time with R2=0.83. Also, the composition ratio of traffic noise according to exposition time has the change of range as the logarithm scale ($30{\sim}50%$), tonality($27{\sim}37%$) and loudness($34{\sim}20%$).
3차원 그래픽 응용이 가능한 소형 모바일 기기에서의 부동소수점 연산 처리는 전력소모가 많고 하드웨어 비용이 많이 들며 연산 해상도가 너무 정확한 연산보다는 적절한 해상도를 확보하되 하드웨어 자원을 적게 소모하고 전력소모가 낮을수록 바람직하다. 비용이 많이 소요되는 부동소수점 연산은 곱셈과 나눗셈이며, 로그 변환을 이용하면 곱셈과 나눗셈을 덧셈과 뺄셈으로 변환하여 고속 동작을 구현할 수 있으며, 이는 로그 함수값을 얼마나 실제값에 근사화 시킬 수 있는지에 따라 성능이 좌우된다. 본 연구에서는 이러한 고속 부동소수점 연산에 적용될 수 있는 로그변환 회로에 대한 동향을 조사하되, 설계 시 중요하게 고려해야 할 점과 로그변환 회로가 어떻게 근사화되고 적용될 수 있는지에 대하여 상세히 분석한다.
This paper proposes a discrete logarithm algorithm that remarkably reduces the execution time of Pollard's Rho algorithm. Pollard's Rho algorithm computes congruence or collision of ${\alpha}^a{\beta}^b{\equiv}{\alpha}^A{\beta}^B$ (modp) from the initial value a = b = 0, only to derive ${\gamma}$ from $(a+b{\gamma})=(A+B{\gamma})$, ${\gamma}(B-b)=(a-A)$. The basic Pollard's Rho algorithm computes $x_i=(x_{i-1})^2,{\alpha}x_{i-1},{\beta}x_{i-1}$ given ${\alpha}^a{\beta}^b{\equiv}x$(modp), and the general algorithm computes $x_i=(x_{i-1})^2$, $Mx_{i-1}$, $Nx_{i-1}$ for randomly selected $M={\alpha}^m$, $N={\beta}^n$. This paper proposes 4-model Pollard Rho algorithm that seeks ${\beta}_{\gamma}={\alpha}^{\gamma},{\beta}_{\gamma}={\alpha}^{(p-1)/2+{\gamma}}$, and ${\beta}_{{\gamma}^{-1}}={\alpha}^{(p-1)-{\gamma}}$) from $m=n={\lceil}{\sqrt{n}{\rceil}$, (a,b) = (0,0), (1,1). The proposed algorithm has proven to improve the performance of the (0,0)-basic Pollard's Rho algorithm by 71.70%.
본 연구에서는 산소의 흡수선을 검출하는 레이저 흡수 분광 시스템을 사용하여 좁은 시험 구간 내의 공기 밀도가 측정되었다. 13156.28과 13156.62 cm-1에 존재하는 산소의 흡수선 한 쌍이 측정되었다. 높이 40 mm를 가지는 기체 챔버가 좁은 시험 구간으로 사용되었다. 레이저 진행 경로를 확장하여 흡수 세기를 증폭시키기 위해 삼각 나선 형태의 레이저 광경로가 기체 챔버 내에 구성되었다. 잘 알려진 로그 증폭기와 2차 증폭기를 사용하여 흡수선 신호를 전기적으로 증폭하였다. 로그 증폭기 이후 신호 포화 방지 및 노이즈 억제를 위해 AC 커플링이 적용되었다. 로그 증폭기 회로구성을 고려하여 출력 신호로부터 파수별 흡광도를 계산하는 과정이 소개되었다. 이론적으로 계산된 파수별 흡광도를 실험적으로 측정된 파수별 흡광도에 선 맞춤하여 공기의 밀도가 측정되었다. 부르돈 압력계를 사용하여 기체 챔버 내에 상온과 10~100 kPa 범위 내에서 다양한 압력을 가지는 시험 조건들이 만들어졌다. 삼각 나선 형태의 광경로 및 로그 증폭기를 사용한 흡수 신호 증폭을 통해, 16 %의 오차 이내에서 좁은 시험 구간의 공기 밀도가 측정될 수 있음이 확인되었다.
Let {$X,\;X_n;n{\geq}1$} be a sequence of i.i.d. random variables. Set $S_n=X_1+X_2+{\cdots}+X_n,\;M_n=\max_{k{\leq}n}|S_k|,\;n{\geq}1$. Then we obtain that for any -1$\lim\limits_{{\varepsilon}{\searrow}0}\;{\varepsilon}^{2b+2}\sum\limits_{n=1}^\infty\;{\frac {(log\;n)^b}{n^{3/2}}\;E\{M_n-{\varepsilon}{\sigma}\sqrt{n\;log\;n\}+=\frac{2\sigma}{(b+1)(2b+3)}\;E|N|^{2b+3}\sum\limits_{k=0}^\infty\;{\frac{(-1)^k}{(2k+1)^{2b+3}$ if and only if EX=0 and $EX^2={\sigma}^2<{\infty}$.
Let {$X,\;X_n;n\;{\geq}\;1$} be a sequence of ${\imath}.{\imath}.d.$ random variables which belong to the attraction of the normal law, and $X^{(1)}_n,...,X^{(n)}_n$ be an arrangement of $X_1,...,X_n$ in decreasing order of magnitude, i.e., $\|X^{(1)}_n\|{\geq}{\cdots}{\geq}\|X^{(n)}_n\|$. Suppose that {${\gamma}_n$} is a sequence of constants satisfying some mild conditions and d'($t_{nk}$) is an appropriate truncation level, where $n_k=[{\beta}^k]\;and\;{\beta}$ is any constant larger than one. Then we show that the conditionally trimmed sums obeys the self-normalized law of the iterated logarithm (LIL). Moreover, the self-normalized LIL for conditionally censored sums is also discussed.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.