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LAWS OF THE ITERATED LOGARITHM
FOR SYMMETRIC LEVY PROCESSES

IN-Suk WEE

1. Introduction

Let {X,,t > 0} be a one-dimensional symmetric Lévy process without
Gaussian component. The characteristic function is expressed as follows;

Eexp(iuX,) = exp(—ty(u)),

where

Y(u) = 2/(;00(1 — cosuz)v(dz).

Here v is a measure on R— {0} satisfying [(1Az?)v(dz) < co. Through-
out this work, we assume that

e 1
1.1 ——————du<oo forsome A>0
(1) /0 A+ p(u)

and

(1.2) /le v(dz) = oo.

It is well-known that under (1.1) and(1.2), there exists a version of lo-
cal time L(t,z,w) which is jointly measurable in (¢,z,w) and satisfies
occupation time density formula. Furthermore, we assume that

(1.3) ¥p(u) is regularly varying at 0 of order a, 1< a < 2.
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We also need to have a.s. joint continuity of L(¢,z) in (¢, z), for which
the necessary and sufficient condition was obtained in [1] and [2]. We
need to introduce some notation. Define

9 :g/ml—cosea:de
CE=2) e

and ¢ to be the monotone rearrangement of ¢. Let

R
1®= [ +(og1/2) 7

Assume that
(1.4) I(¢) < oo .

In (1] and [2], under (1.1) and (1.2), (1.4) was shown to be equivalent to
joint continuity of L(t,z). The main purpose of this work is to obtain the
exact law of iterated logarithm(LIL) of limsup type for maximal local
time, L*(t) = sup, L(t,z). For Brownian Motion, Kesten [6] showed that

lims L,0) lim su L'@)
imsu =1l
el VOTTL e’ /2L IIE

using Ray-Knight theorem, where [it denotes loglogt. For symmetric
stable process of index a, 1 < a < 2. Donsker and Varadhan [4] obtained
the analogue using the large deviation theory. Recently, Marcus and
Rosen [7] proved the exact limsup result for L(t,0) for the processes
considered in this work. They obtained

lim sup L(,0)

t—o0 mzcl(a) a.s.

where

(Ci(a))* =(Cla))™

e = (-0 (rr=sirrs)

and
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Our main result is to obtain the sharp lim sup result for L*(¢) with the
exactly same rate of growth as for L(¢,0). In fact, this is not unexpected
because it was proved in [9] that the tail probabilities for L*(¢) and
L(t,0) have the same order of exponential decay. As a result of LIL of
limsup type for L*(¢), we obtain LIL of liminf type for the Lebesgue
measure of the range up to time t and sup,<,|X,|. Although it is not
possible to obtain the sharp results, it is interesting to find that they
have the same rate of growth, when they are small. To be more precise,
let

A¢ = sup | X,
s<t

Ri={z:X,=2, s<t}
and m(R;) be its Lebesgue measure. Then we prove that

1
At ~ m(Rt) ~N —— a.8.

1 (1lE]t)

when they are small, where “&” means that the ratio of both sides is
bounded above and below by some finite positive constants. Further-
more,we prove the liminf LIL for maximum of |X| when its large jumps
are removed. That is, define

th(a) = X(t) - Z (Xu = Xu)x{] Xy — Xoe |> a}

u<t

Ay(a) = sup | X (a)|.
s<t

Then it turns out that
A}(at) [~ m(Rt) ~ At

when they are small for appropriate a,, although for symmetric stable
processes, it was proved that by Griffin [5]

Aj(ay) ~ m(Ry) < A,

when they are large.
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2. Main Results

In this section, we prove limsup LIL for L*(t) and liminf LIL for A,
m(R;) and A}(a;). Throughout this section, we assume that (1.1), (1.2),
(1.3) and (1.4) hold. The basic probability estimate for L*(t) is provided
by [9].

LEMMA 1[9]. Suppose
tlim t/Ae = tlim P(A/t) = o0

and

) Y
lim sup < o0

oo tP(Ae/t)

Then
—log P(L*(t) > A¢) ~ C(a)typ(Ae/t)

[+
where C(a) = (a — 1)*7! (Wl_——ﬂfm) and “ ~ " means that the

ratio tends to 1 as t — oo.

THEOREM 2.1.

L*(t
lim sup ®)

t—00 W = Ci(a) as.

Proof. Let h(t) = typ~1(lit/t). To obtain the upper bound, let tx =
9k 6 > 1. For given € > 0, choose § > 0 such that (1 —é)(1 +€)* > 1.
Lemma 1 implies that for k sufficiently large,

P (L*(t) > (1+ Ci(@)hte-1))
< exp (~(1 - 6)(1+ ) lite_1/6°7)

—(1-6)(14€e)* /87!
:((k—l)log9> :

Choose 8 > 1 so that (1—§8)(1+4¢€)* > 8*!. Then by the Borel-Cantelli
Lemma, we have for any € > 0

li?igp I;L*(Eft)) <(1+¢€)Ci(a) as.
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To prove the lower bound result, let t; = exp(k®), § > 1. It suffices to
prove divergence of

S P ((L(t) = L{te-1))" > (1= Ca(a)h(tr))
k
for any € > 0, where

() - L(tk_l))* = sup (Z(te2) - L(tior, ).

For given € > 0, choose 6 > 0,7 > 0,8 > 1 so that 3(1 + 8)(1 + n)(1 —
€)* < 1. Again by Lemma 1, we have

P ((L(t) = L(ts—1))" > (1= )Ci(a)h(ty))

> exp ( —(1+6)1+m1 - 6)°‘lltk)
= p-BO+E) (A7) (1-0)°

for k sufficiently large.

Now to prove the liminf results for A;, m(R;) and A}(a,), we need to
have probability estimates for | X,|.

LEMMA 2.
(1) For Ky > 0, and s sufficiently large,

<' < g Iﬁ/@) > o ("(zz'l)a)'

2) For 0 < 6 < 7, K3 > 0, and s sufficiently large,
2

K, 46 K,
('X’w (1/>>> b
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Proof. For the lower bound, let A\; = K;/¢~!(1/s), and use the in-

version formula:

U

P(1X, < M) = %/ﬂw UM exp (—sp(u)) du

4\
> 201 exp (—sp(u)) du
T Jo<un <%

2 T
> Z —stp(——
_ﬂ_exp( 31/)(2/\1 )
2 s
> Z —(=Zye ),
> 7r~‘3xp< (2K1 )
For the upper bound, let A, = K3 /¢~(1/s). Then

$ _
(X< h) <= /p( sp(u)) du

i 2 / L exp (—sp(w)) du

T udy > U
46 2 / 1
<24+ 2 —du
T TS Jur>s up(u)
46 2

T + masp(é/A2)
46 2 <K 2 )a
~ —— + —_— —_—
T Ta\ 6
where the regular variation of 1 at zero is used in the last two steps. See
[3].
Finally, we prove the three liminf results.

THEOREM 2.2. There exist positive finite constants Cz, Cj, and Cjy
such that

(2.1) litminf m(Ry) v (Ut/t) = C2 a.s.
(2.2) litminf A7 (lIt)t) = C3  a.s.
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(2.3) lim inf Af(a) ™1 (lltft) = Cy a.s.

-1

where a, = (Y ~1(llt/t))

Proof. Since t < L*(t)m(R;:), we have
1 .. T/t

=1
Cila) ~ Bmint =72

< litminf m(R)y ™ (UIt)t) a.s.

To prove (2.1) and (2.2), it remains to show that for some C > 0,

litminf'At v (/) < C as.

Let s = t/lit, and choose K large so that 2 exp (—(7/K;)*) > 1.
Then we have

e T )> P(1xis 5 TETeYe )) :
> 2 exp (~(n/E1)*) - 1.

Let £ exp (—(n/Ky)*)—1=2e7¢, n=[lit]+1,and M = K, /2"1(1/s).
Fork—l 2,...,n, let

Ek:{ iuli 1 X (k=1)s4u — X(k=1)s] < M, |st|<M}
0<u<s

Observe that
P (Mi=1 Bt | Fruoyys) =132 le P(En | X(n-1)s) a.s.

where F; is the smallest o- field generated by {X,, u < t}. On the event
En—la

P(En IX(n—l)s) Z P(As < Ma -M < Xs < 0)
= S P(A, < M)
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if 0< Xo1ys <M, and similarly if -M < X, 1), < 0. By taking
iterated conditional expectations, we have

P( < g Ifl/@) ><1P(A <M)>n

> (e logt)‘f

The rest of the proof runs similarly to the proof of Theorem 3.3 in [8].
Finally, for the liminf result for 4}(a,), observe that for ¢ > 0, and ¢
large

(2.4)
P(‘th/m(at)l <A) 2> P(|Xyuel £ A)
(2.5)
P(‘th/m(at)l < A) < exp(tG(ay) /”t)P(|Xt/llt1 <)
< exp(Cs(a)(1+ €))P(|Xejue < A)

G(a) = /|;|>a v(dz) ~ Cs(a)yp(l/a) as a — oo

by regular variation of ¥ at zero where Cs(a) = m{;—]——nw_—&— See Lemma
/ 2

2.4 in [9]. (2.4) and Lemma 2.(1) yield the upper bound result for A}(ay)
by using the same technique for A;. For the lower bound, we need
to prove that for some C > 0, 3 P (4] (ay,) < Cay,,,) converges for
tr = 2% which is fairly routine using Lemma 2.(2) and (2.5).
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