• Title/Summary/Keyword: Location-Aware

Search Result 289, Processing Time 0.028 seconds

A Simulation-Based Development Methodology for CAS (Context-Aware Web Services) Personalization (컨텍스트 기반 맞춤형 웹 서비스 제작을 위한 시뮬레이션 기반 방법론)

  • Chang, Hee-Jung;Kim, Ju-Won;Choi, Sung-Woon;Lee, Kang-Sun
    • Journal of the Korea Society for Simulation
    • /
    • v.15 no.4
    • /
    • pp.11-19
    • /
    • 2006
  • With the emergence of pervasive computing, personalization becomes an important issue to provide with users customized services, anywhere and anytime in their specific environment. Many researches have shown the possibilities of personalization by acquiring and processing sensor information around users. However, personalization remains still at its infancy, since most researches have failed to consider various contexts comprehensively besides sensor data, and just developed tailored services for a specific application domain. In this work, we propose a simulation-based CAS (context Aware Web Services) development methodology. Our methodology considers various contexts on users (eg. current location), web services (eg. response time), devices (eg. availability) and environment (eg. sensor data) all together by simulating them on the fly for personalized and adaptable services.

  • PDF

Object Location Sensing using Signal Pattern Matching Methods (신호 패턴 매칭 방법을 이용한 이동체 위치 인식)

  • Byun, Yung-Cheol;Park, Sang-Yeol
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.4
    • /
    • pp.548-558
    • /
    • 2007
  • This paper presents a method of location sensing of mobile objects using RF devices. By analyzing signal strengths between a certain number of fixed RF devices and a moving RF device, we can recognize the location of a moving object in real time. Firstly, signal strength values between RF devices are gathered, and then the values are normalized and constructed as a model feature vector for specific location. A number of model patterns are acquired and registered for all of the location which we want to recognize. For location sensing, signal strength information for an arbitrary moving RF device is acquired and compared with model feature vectors registered previously. In this case, distance value is calculated and the moving RF device is classified as one of the known model patterns. Experimental results show that our methods have performed the location sensing successfully with 100% rate of recognition when the number of fixed RF devices is 10 or more than 12. In terms of cost and applicability, experimental results seem to be very encouraging.

  • PDF

Performance Evaluation of RSSI-based Various Trilateration Localization (RSSI기반에서 다양한 삼변측량 위치인식 기법들의 성능평가)

  • Kim, Sun-Gwan;Kim, Tae-Hoon;Tak, Sung-Woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.493-496
    • /
    • 2011
  • Currently in the development of community wireless technology is gaining interest in location-based services and as a result, the importance of the location information is a growing trend. To calculate the location information is being suggested several ways, among them Trilateration is representative. Trilateration is three beacon nodes, the distance between the location in which you want to calculate with information. Beacon from a node to know where to get information when the distance between the obstacle and the distance error caused by the surrounding environment, which leads to the exact location can not be obtained. Currently due to distance error, location information has a variety of algorithms to reduce the error. However, a systematic analysis of these algorithms is not progress. This paper analyzes the location-aware technologies, and the error the distance of the location information to reduce errors in the various aspects of the algorithm for the systematic and empirical comparison was evaluated through the analysis.

  • PDF

Implementation of Mobile Digital Signage System on the Moving Vehicle (차량 탑재형 모바일 디지털 사이니지 구현)

  • Kim, Hee Dong;Kim, Cha Sung
    • Journal of Information Technology Services
    • /
    • v.14 no.4
    • /
    • pp.257-267
    • /
    • 2015
  • We propose a vehicle-mounted, location-aware mobile digital signage system that can be used for public transportation through mobile communication. This paper proposes the installations of the LED display panels at the backside of the bus., which display traffic information to cars behind the bus. Information to be displayed would include, but is not limited to, road information, public commercials and private commercials. We propose the system architecture and further implement the prototype of mobile digital signage system for demonstration. The system is based on the Client-Server system. Each bus has a client terminal which detects the current location by a GPS receiver and sends its location information to the server using mobile communication function. The terminal device receives advertisements and traffic information from the server and displays it to the large LCD or LED panel installed at the inside and outside of the bus. We use the Android smartphone as a client system, which inherently equipped with GPS and mobile communication function. GPS detects the location of bus and reports its geo-location data to the traffic information center server via a wireless communication network. On the server side, we developed a specially designed control server, where it communicates with the other traffic information center and updates and manages the databases contents being displayed by each position. The server contains location dependent variable information and returns selected information back to the vehicle in real time. Spatial database is used to process location based data. Server system periodically receives the real time traffic information from the road information center database. And it process the information by bus location and bus line number. In this paper, we propose a mobile digital signage service and explain the system implementation of this service.

Design And Implementation of Zone Based Location Tracking System Using ZigBee in Indoor Environment (실내 환경에서 ZigBee를 이용한 Zone 기반 위치추적 시스템 설계 및 구현)

  • Nam, Jin-Woo;Chung, Yeong-Jee
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.1003-1006
    • /
    • 2009
  • Recently, Ubiquitous computing technology is increasing necessity for object recognition and a location tracking technology to meet various applications. The location tracking technology is the fundamental to the Context-Aware of users in Ubiquitous environment and its efficiency has to be improved using IEEE 802.15.4 ZigBee used in current infra such as ubiquitous sensor network. But because the IEEE 802.15.4 ZigBee protocol has limitation to apply location tracking technology such as ToA and TDoA, Zone-based Location Tracking technology using RSSI is needed. In this paper suggests RSSI-based 802.15.4 ZigBee local positioning protocol to support a positioning tracking service in Ubiqutous environment. And Zone-based location tracking system is designed for actual the indoor location tracking service.

  • PDF

A Jini-Based Ubiquitous Messaging System Supporting Context Awareness and User Mobility

  • Choi, Tae-Uk;Chung, Ki-Dong
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.6
    • /
    • pp.832-840
    • /
    • 2004
  • In ubiquitous environments, context is any information that can be used to characterize the situation of an entity such as a person or an object. Many sensors and small computers collect contexts and provide applications with them. Thus, ubiquitous applications need to represent contexts and exploit them effectively. In this paper, we design and implement a context-aware messaging system, called UMS (Ubiquitous Messaging System), based on Java and Jini. UMS can represent various contexts using XML scripts, and communicate text messages regardless of user's location using the proxy mechanism of Jini.

  • PDF

RSSI based Intelligent Indoor Location Estimation Robot using Wireless Sensor Network technology (무선 센서네트워크 기술을 활용한 RSSI기반의 지능형 실내위치추정 로봇)

  • Seo, Won-Kyo;Jang, Seong-Gyun;Shin, Kwang-Sik;Chung, Wan-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.375-378
    • /
    • 2007
  • This paper describes indoor location estimation intelligent robot. It is loaded indoor location estimation function using RSSI based indoor location estimation system and wireless sensor networks. Spartan III(Xilinx, U.S.A.) is used as a main control device in the mobile robot and the current direction data is collected in the indoor location estimation system. The data is transferred to the wireless sensor network node attached to the mobile robot through Zigbee/IEEE 802.15.4, a wireless communication. After receiving it, with the data of magnetic compass the node is aware of and senses the direction the robot head for and the robot moves to its destination. Indoor location estimation intelligent robot is can be moved efficiently and actively without obstacle on flat ground to the appointment position by user.

  • PDF

RSSI based Intelligent Indoor Location Estimation Robot using Wireless Sensor Network technology (무선센서네트워크 기술을 활용한 RSSI기반의 지능형 실내위치추정 로봇)

  • Seo, Won-Kyo;Jang, Seong-Gyun;Shin, Kwang-Sik;Lee, Eun-Ah;Chung, Wan-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.6
    • /
    • pp.1195-1200
    • /
    • 2007
  • This paper describes indoor location estimation intelligent robot. Indoor location estimation function using RSSI based indoor location estimation system and wireless sensor networks were implemented in the robot. Spartan III(Xilinx, U.S.A.) was used as a main control device in the mobile robot and the current direction data was collected in the indoor location estimation system. The data was transferred to the wireless sensor network node attached to the mobile robot through Zigbee/IEEE 802.15.4, a wireless communication. After receiving it, with the data of magnetic compass the node is aware of and senses the direction the robot head for and the robot moves to its destination. Indoor location estimation intelligent robot is can be moved efficiently and actively without obstacle on flat ground to the appointment position by user.

A Survey of System Architectures, Privacy Preservation, and Main Research Challenges on Location-Based Services

  • Tefera, Mulugeta K.;Yang, Xiaolong;Sun, Qifu Tyler
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.6
    • /
    • pp.3199-3218
    • /
    • 2019
  • Location-based services (LBSs) have become popular in recent years due to the ever-increasing usage of smart mobile devices and mobile applications through networks. Although LBS application provides great benefits to mobile users, it also raises a sever privacy concern of users due to the untrusted service providers. In the lack of privacy enhancing mechanisms, most applications of the LBS may discourage the user's acceptance of location services in general, and endanger the user's privacy in particular. Therefore, it is a great interest to discuss on the recent privacy-preserving mechanisms in LBSs. Many existing location-privacy protection-mechanisms (LPPMs) make great efforts to increase the attacker's uncertainty on the user's actual whereabouts by generating a multiple of fake-locations together with user's actual positions. In this survey, we present a study and analysis of existing LPPMs and the state-of-art privacy measures in service quality aware LBS applications. We first study the general architecture of privacy qualification system for LBSs by surveying the existing framework and outlining its main feature components. We then give an overview of the basic privacy requirements to be considered in the design and evaluation of LPPMs. Furthermore, we discuss the classification and countermeasure solutions of existing LPPMs for mitigating the current LBS privacy protection challenges. These classifications include anonymization, obfuscation, and an encryption-based technique, as well as the combination of them is called a hybrid mechanism. Finally, we discuss several open issues and research challenges based on the latest progresses for on-going LBS and location privacy research.

Implement of Zigbee Indooer location aware system by RSSI between anchors (고정 노드 간의 RSSI 값을 이용한 Zigbee 실내 위치 인식 시스템 구현)

  • Lee, Jin-Wook;Ryu, Jae-Jong;Lee, Wu-Sung;Han, Doug-Koo;Choi, Hyun-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2008.04a
    • /
    • pp.43-44
    • /
    • 2008
  • 본 논문에서는 Weighted Cenrtoid Localization(WCL) 알고리즘을 적용하여, 고정 노드 (Anchors) 사이의 측정된 수신 신호 강도(RSSI)로 Zigbee 실내 위치 인식 시스템을 구현하였다. 센서 노드의 위치는 RSSI에 의해 선택된 가상 고정 노드에 WCL을 적용하여 결정한다. WCL에서 부여하는 가중치는 고정 노드와 RSSI 센서 노드 위치의 거리에 대한 함수이며, 고정 노드 간의 측정된 RSSI 값으로 구한다. 고정 노드 간의 RSSI로 가상 고정 노드를 이용한 WCL은 기존의 방식에서 사용되는 고정 노드의 수를 줄이고, 측정 대상의 위치 정확도를 측정된 RSSI 값만으로 추정한 위치보다 7.8% 향상되는 것을 확인 하였다.

  • PDF