• Title/Summary/Keyword: Location Selection Process

Search Result 135, Processing Time 0.027 seconds

Supplier Selection and Assignment of Order Quantities to suppliers for the Efficient Purchasing Management in Supply Chain Management (공급사슬경영에서의 효율적인 구매 관리를 위한 공급자 선택 및 주문량 할당에 관한 연구)

  • 정주기;이영해
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2000.10a
    • /
    • pp.99-102
    • /
    • 2000
  • In the supply chain network design, how to select the best location, capacity configuration of the suppliers and to assign manufacturers orders are a challenging issue. Especially when multi-tiers'suppliers are existed, the performance of supply chain is influenced by 2$\^$nd/ and 3$\^$rd/ suppliers. Supplier selection is multi-criteria problem which includes both qualitative and quantitative factors in supply chains. In order to select the best supplier it is necessary to make a trade off between these two factors such as cost, product quality, capacity, production lead time, deliver lead time and transportation lead tine of supplier constraints existed in multi-tiers supplier purchasing chain. In these circumstances, purchasing agents should decide two problems: which is the best supplier in each tier and how much should be purchased from each selected supplier. This research is intended to develop an integration of an analytical hierarchy process (AHP) and mathematical modeling proposed to consider two factors which may be conflicted in choosing the best supplier in each tier and placing the optimum order quantities to the supplier among multi-tiers suppliers.

  • PDF

Selection issue on the balance shaft for a inline 4-cylinder engine as how to locate both supporting bearing and unbalance mass (직렬 4기통 엔진용 밸런스 샤프트 불평형 질량과 베어링 위치 선정 방법)

  • Lee, Dong-Won;Kim, Chan-Jung;Bae, Chul-Yong;Lee, Bong-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.801-806
    • /
    • 2008
  • Large quantity of bending deformation as well as rotating torque fluctuation at the balance shaft are main struggles during the operation in a high speed rotation and thereby, two issues should be cleared at the design process of balance shaft module. Since two issues are highly related with balance shaft itself and particularly much sensitive to the location of both supporting bearing and unbalance mass, the design strategy on balance shaft should be investigated at the aspect of controlling two critical issues at the early stage of balance shaft design. To tackle two main problems, the formulation of objective function that minimizes critical issues, both bending deformation as well as torque fluctuation, is suggested to derive the optimal information on balance shaft. Then, optimal informations are reviewed at the practical logics and the guideline at the selection of locations, both supporting bearing and unbalance mass, is addressed at the final chapter.

  • PDF

Structural damage identification based on modified Cuckoo Search algorithm

  • Xu, H.J.;Liu, J.K.;Lv, Z.R.
    • Structural Engineering and Mechanics
    • /
    • v.58 no.1
    • /
    • pp.163-179
    • /
    • 2016
  • The Cuckoo search (CS) algorithm is a simple and efficient global optimization algorithm and it has been applied to figure out large range of real-world optimization problem. In this paper, a new formula is introduced to the discovering probability process to improve the convergence rate and the Tournament Selection Strategy is adopted to enhance global search ability of the certain algorithm. Then an approach for structural damage identification based on modified Cuckoo search (MCS) is presented. Meanwhile, we take frequency residual error and the modal assurance criterion (MAC) as indexes of damage detection in view of the crack damage, and the MCS algorithm is utilized to identifying the structural damage. A simply supported beam and a 31-bar truss are studied as numerical example to illustrate the correctness and efficiency of the propose method. Besides, a laboratory work is also conducted to further verification. Studies show that, the proposed method can judge the damage location and degree of structures more accurately than its counterpart even under measurement noise, which demonstrates the MCS algorithm has a higher damage diagnosis precision.

A FRF-based algorithm for damage detection using experimentally collected data

  • Garcia-Palencia, Antonio;Santini-Bell, Erin;Gul, Mustafa;Catbas, Necati
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.4
    • /
    • pp.399-418
    • /
    • 2015
  • Automated damage detection through Structural Health Monitoring (SHM) techniques has become an active area of research in the bridge engineering community but widespread implementation on in-service infrastructure still presents some challenges. In the meantime, visual inspection remains as the most common method for condition assessment even though collected information is highly subjective and certain types of damage can be overlooked by the inspector. In this article, a Frequency Response Functions-based model updating algorithm is evaluated using experimentally collected data from the University of Central Florida (UCF)-Benchmark Structure. A protocol for measurement selection and a regularization technique are presented in this work in order to provide the most well-conditioned model updating scenario for the target structure. The proposed technique is composed of two main stages. First, the initial finite element model (FEM) is calibrated through model updating so that it captures the dynamic signature of the UCF Benchmark Structure in its healthy condition. Second, based upon collected data from the damaged condition, the updating process is repeated on the baseline (healthy) FEM. The difference between the updated parameters from subsequent stages revealed both location and extent of damage in a "blind" scenario, without any previous information about type and location of damage.

Optimal Design of a Branched Pipe Network with Multiple Sources

  • Lee, Moon-Kyu
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.10 no.2
    • /
    • pp.17-27
    • /
    • 1984
  • This paper is concerned with a branched pipe network system which transports some fluids or gas from multiple sources to multiple demand nodes. A nonlinear programming model is proposed for determining junction locations simultaneously with selection of pipe sizes and pump capacities such that the capital and operating costs of the system are minimized over a given planning horizon. To solve the model, a hierarchical decomposition method is developed with the junction location being the primary variable. With some values fixed for the primary, the other decision variables are found by linear programming. Then, using the postoptimality analysis of LP, junction locations are adjusted. We repeat this process until an optimum is approached. A simple example of designing a water distribution network is solved to illustrate the optimization procedure developed.

  • PDF

APPLICATION OF HISTOGRAM OUTLIER ANALYSIS ON THE IMAGE DEGRADATION MODEL FOR BEST FOCAL POINT SELECTION

  • Shin, Hyun-Kyung
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.1_2
    • /
    • pp.175-182
    • /
    • 2009
  • Microscopic imaging system often requires the algorithm to adjust location of camera lenses automatically in machine level. An effort to detect the best focal point is naturally interpreted as a mathematical inverse problem [1]. Following Wiener's point of view [2], we interpret the focus level of images as the quantified factor appeared in image degradation model: g = $f{\ast}H+{\eta}$, a standard mathematical model for understanding signal or image degradation process [3]. In this paper we propose a simple, very fast and robust method to compare the degradation parameters among the multiple images given by introducing outlier analysis of histogram.

  • PDF

Nuclear Medicine Imaging Diagnosis in Infectious Bone Diseases (감염성 골질환의 핵의학 영상진단)

  • Choi, Yun-Young
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.40 no.4
    • /
    • pp.193-199
    • /
    • 2006
  • Infectious and inflammatory bone diseases include a wide range of disease process, depending on the patient's age, location of infection, various causative organisms, duration from symtom onset, accompanied fracture or prior surgery, prosthesis insertion, and underlying systemic disease such as diabetes, etc. Bone infection may induce massive destruction of bones and joints, results in functional reduction and disability. The key to successful management is early diagnosis and proper treatment. Various radionuclide imaging methods including three phase bone scan, Ga-67 scan, WBC scan, and combined imaging techniques such as bone/Ga-67 scan, WBC/bone marrow scan add complementary role to the radiologic imaging modalities including plain radiography, CT and MRI. F-18 FDG PET imaging also has recently been introduced in diagnosis of infected prosthesis and chronic active osteomyelitis. Selection of proper nuclear medicine imaging method will improve the diagnostic accuracy of infections and inflammatory bone diseases, based on understading of pathogenesis and radiologic imaging findings.

A Wrist-Type Fall Detector with Statistical Classifier for the Elderly Care

  • Park, Chan-Kyu;Kim, Jae-Hong;Sohn, Joo-Chan;Choi, Ho-Jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.10
    • /
    • pp.1751-1768
    • /
    • 2011
  • Falls are one of the most concerned accidents for elderly people and often result in serious physical and psychological consequences. Many researchers have studied fall detection techniques in various domain, however none released to a commercial product satisfying user requirements. We present a systematic modeling and evaluating procedure for best classification performance and then do experiments for comparing the performance of six procedures to get a statistical classifier based wrist-type fall detector to prevent dangerous consequences from falls. Even though the wrist may be the most difficult measurement location on the body to discern a fall event, the proposed feature deduction process and fall classification procedures shows positive results by using data sets of fall and general activity as two classes.

An Improved PeleeNet Algorithm with Feature Pyramid Networks for Image Detection

  • Yangfan, Bai;Joe, Inwhee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.05a
    • /
    • pp.398-400
    • /
    • 2019
  • Faced with the increasing demand for image recognition on mobile devices, how to run convolutional neural network (CNN) models on mobile devices with limited computing power and limited storage resources encourages people to study efficient model design. In recent years, many effective architectures have been proposed, such as mobilenet_v1, mobilenet_v2 and PeleeNet. However, in the process of feature selection, all these models neglect some information of shallow features, which reduces the capture of shallow feature location and semantics. In this study, we propose an effective framework based on Feature Pyramid Networks to improve the recognition accuracy of deep and shallow images while guaranteeing the recognition speed of PeleeNet structured images. Compared with PeleeNet, the accuracy of structure recognition on CIFA-10 data set increased by 4.0%.

Energy-efficient routing protocol based on Localization Identification and RSSI value in sensor network (센서 네트워크에서 RSSI 값과 위치 추정 기반의 에너지 효율적인 라우팅 프로토콜)

  • Kim, Yong-Tae;Jeong, Yoon-Su;Park, Gil-Cheol
    • Journal of Digital Convergence
    • /
    • v.12 no.1
    • /
    • pp.339-345
    • /
    • 2014
  • This study has a purpose that improves efficiency of energy management and adaptation followed by movement of node better than the various early studied routing techniques. The purpose of this paper is the technique that uses RSSI value and location of sensor that is received by each sensor node to routing. This sduty does not save node information of 1-hop distance. And it solves energy-inefficient traffic problem that happens during data exchange process for middle node selection in close range multi hop transmission technique. The routing protocol technique that is proposed in this study selects a node relevant to the range of transmission which is set for RSSI value that is received by each node and selects the closest node as a middle node followed by location data. Therefore, it is for not exhaustion of node's energy by managing energy efficiently and cutting data transmission consuming until the destination node.