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Abstract

Faced with the increasing demand for image recognition on mobile devices, how to run
convolutional neural network (CNN) models on mobile devices with limited computing power and
limited storage resources encourages people to study efficient model design. In recent
years, many effective architectures have been proposed, such as mobilenet_v1, mobilenet_v2
and PeleeNet. However, in the process of feature selection, all these models neglect some
information of shallow features, which reduces the capture of shallow feature location and
semantics. In this study, we propose an effective framework based on Feature Pyramid
Networks to improve the recognition accuracy of deep and shallow images while guaranteeing
the recognition speed of PeleeNet structured images. Compared with PeleeNet, the accuracy of

structure recognition on CIFA-10 data set increased by 4.0%.

1. Introduction

In this paper, We redesigned the original
architecture of Feature Pyramid Networks (FPN).
The method of feature fusion is simplified, and
the feature is fused by up-sampling for
prediction. Under the condition of guaranteeing
the speed of PeleeNet structure image recognition,
the deep and shallow image features are fused
together with the redesigned FPN structure for
image recognition. Compared with PeleeNet, the
accuracy of structure recognition on CIFA-10 data
set increased by 4.0%.

2. PeleeNet architecture

The architecture of the PeleeNet 1s shown as
follows in Table 1. The entire network consists
of a stem block and four stages of feature
extractor. Except the last stage, the last layer
in each stage 1s average pooling layer with
stride 2. A four—stage structure 1s a commonly
used structure in the large model design.
ShuffleNet uses a three stages structure and
shrinks the feature map size at the beginning of
each stage. Although this can effectively reduce
computational cost, 1t 1is very important for
early stage features especially vision tasks, and
that premature reducing the feature map size can
impair representational abilities. Therefore,
PeleeNet still maintain a four-stage structure.
The number of layers in the fi rst two stages are
specifi cally controlled to an acceptable range.

<Table 1> PeleeNet architecture

Stage Layer Qutput Shape

Input 32+32+3

Stage0 Steam Block 16+16+128

Stagel Dense Block Dense Layers4

Transition Layer 1+1 conv,stridel 8*B+256

2+2average pool stride2

Stage2 Dense Block Dense Layer<8

Transition Layer 1+1 conv,stridel 4#4s512

2#2average pool stride2

Stage3 Dense Block Dense Layer+6

Transition Layer 1+1 eonv stridel A*4+704

2+2average pool stride2

Classification Layer 7+7 global average pool 1414704

1000D fully-connect, softmax

PeleeNet uses a 2-way dense layer to get different
scales of receptive fields. The layer uses two
stacked 3x3 convolution to learn visual patterns
for large objects. The structure is shown on
Fig.1.
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(Fig.1) 2-way dense layer
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PeleeNet designs a cost efficient stem block
before the fi rst dense layer. The structure of
stem block i1s shown on Fig. 2. This stem block
can effectively improve the feature expression
ability without adding computational cost too
much - better than other more expensive methods,
increasing channels of the first convolution
layer or increasing growth rate.
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(Fig.2) Stem Block

3. Feature pyramid network architecture

Recognizing objects at vastly different scales is
a fundamental challenge in computer vision.
Feature pyramids built upon image pyramids (for
short we call these featured image pyramids) form
the basis of a standard solution. These pyramids
are scale-invariant in the sense that an
object’ s scale change is offset by shifting its
level in the pyramid. Intuitively, this property
enables a model to detect objects across a large
range of scales by scanning the model over both
positions and pyramid levels.

Most object detection algorithms only use top-
level features to predict, but we know that the

low-level feature  semantic information 1is
relatively small, but the target location 1s
accurate. The high-level feature  semantic

information is rich, but the target location is

rough. In this paper, multi-scale feature fusion
method 1is wused for feature prediction. With
shallow location features and deep semantic

information preserved, the calculation parameters
are reduced to ensure the real-time operation of
the mobile terminal.

The goal of this paper is to make use of the
pyramidal shape of a FPN' s feature hierarchy
while creating a feature pyramid that has strong
semantics at all scales. To achieve this goal, we
rely on an architecture that combines low-
resolution, semantically strong features with
high-resolution, semantically weak features via a
top—down pathway. The result is a feature pyramid
that has rich semantics at all levels and is

built quickly from a single input 1image
scale.Fig.3 below is the FPN architecture
designed in this paper. Table 2 is the

architecture design of specific FPN.

(Fig.3) Improved FPN

<Table 2> Improved FPN architecture

Concatenate Layer Qutput shape
Staged_input 4*4+704
Conv 1#1#512 4#44512
Concatl 4=4+1024
Conv 1+1+256 4*4x256
Conv 3+3*512 4+44512
Conv 1+1#256 4#44256
resize 8+8+256
Concat2 8+8+512
Conv 1*1+128 8+8+128
Conv 3+3+256 8+8+256
Conv 1+1+128 8+8+128
Adjust size Conv 1+1+256 4=4+256
Stride 2+2
Conv 1*1#512 4*4+512
Conv 1+1+704 4+4+704

Classification layer 7+7 global average pool

1000D FC, softmax

4. Experiments on Object Detection

The CIFA-10 data set is used in this test. There
are 60,000 color images in this data set. These

images are 32+%*32 and are divided into 10
categories, with 6,000 images in each category.
There are 50,000 pictures for training, which

constitute five batches of 10,000 pictures for
each batch. Another 10,000 are used for testing,
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forming a single batch. The data of the test
batches were taken from each of the 10 categories,
and 1000 pieces were randomly selected for each
category. The rest were randomly arranged into
training batches. As shown in Fig.4.

(Fig.4) CIFA-10 Data Set

Firstly, We trained the original PeleeNet model
and the improved PeleeNet+FPN model 120 times
under the conditions of 0.001 learning rate and
Adam optimization function respectively. After
CIFA-10 data set test, the recognition rate of
the observed pictures 1is 87.35% and 89.01%
respectively. It can be seen that the recognition
rate of the improved PeleeNet+FPN model is 1.9%
higher than that of the previous PeleeNet model.
The results are shown in Table 3 below.

<Table 3> Test Result 1

Optimization Learning rate Epoch Accuracy rate
function
PeleeNet Adam 0.001 120 87.35%
PeleeNet+FPN  Adam 0.001 120 89.01%

Device : GTX1070 Raise 1.7%

Then I fine—tuned the PeleeNet + FPN model twice.
Entropy loss of PeleeNet+FPN model decreased from
0.18 to 0.016, a decrease of 91%. The results are
shown in Table 4 below.

<Table 4> Test Result 2

Optimization Learning Epoch Accuracy Entropy

function rate rate loss
PeleeNet+FPN  Adam 0.001 120 89.01% 018
PeleeNet+FPN  Adam 0.001 200 89.54% 0.105
PeleeNet+FPN  RMSprop 0.0001 300 91.00% 0.016

Device : GTX1070 Raise 4.0%

5. Conclusion

The PeleeNet+FPN model proposed in this paper has
a significant improvement in the performance of
target recognition compared with the original
PeleeNet model. PeleeNet + FPN model can
effectively combine feature maps of different
scales, and use the high-resolution information
of low-level features and high-level features to
achieve the prediction effect by fusing these
features of different layers. Good recognition
results are obtained on CIFA-10 data set.
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