• Title/Summary/Keyword: Location Estimation Algorithm

Search Result 329, Processing Time 0.027 seconds

ACA: Automatic search strategy for radioactive source

  • Jianwen Huo;Xulin Hu;Junling Wang;Li Hu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.3030-3038
    • /
    • 2023
  • Nowadays, mobile robots have been used to search for uncontrolled radioactive source in indoor environments to avoid radiation exposure for technicians. However, in the indoor environments, especially in the presence of obstacles, how to make the robots with limited sensing capabilities automatically search for the radioactive source remains a major challenge. Also, the source search efficiency of robots needs to be further improved to meet practical scenarios such as limited exploration time. This paper proposes an automatic source search strategy, abbreviated as ACA: the location of source is estimated by a convolutional neural network (CNN), and the path is planned by the A-star algorithm. First, the search area is represented as an occupancy grid map. Then, the radiation dose distribution of the radioactive source in the occupancy grid map is obtained by Monte Carlo (MC) method simulation, and multiple sets of radiation data are collected through the eight neighborhood self-avoiding random walk (ENSAW) algorithm as the radiation data set. Further, the radiation data set is fed into the designed CNN architecture to train the network model in advance. When the searcher enters the search area where the radioactive source exists, the location of source is estimated by the network model and the search path is planned by the A-star algorithm, and this process is iterated continuously until the searcher reaches the location of radioactive source. The experimental results show that the average number of radiometric measurements and the average number of moving steps of the ACA algorithm are only 2.1% and 33.2% of those of the gradient search (GS) algorithm in the indoor environment without obstacles. In the indoor environment shielded by concrete walls, the GS algorithm fails to search for the source, while the ACA algorithm successfully searches for the source with fewer moving steps and sparse radiometric data.

Development of Travel Time Estimation Algorithm for National Highway by using Self-Organizing Neural Networks (자기조직형 신경망 이론을 이용한 국도 통행시간 추정 알고리즘)

  • Do, Myungsik;Bae, Hyunesook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3D
    • /
    • pp.307-315
    • /
    • 2008
  • The aim of this study is to develop travel time estimation model by using Self-Organized Neural network(in brief, SON) algorithm. Travel time data based on vehicles equipped with GPS and number-plate matching collected from National road number 3 (between Jangji-IC and Gonjiam-IC), which is pilot section of National Highway Traffic Management System were employed. We found that the accuracies of travel time are related to location of detector, the length of road section and land-use properties. In this paper, we try to develop travel time estimation using SON to remedy defects of existing neural network method, which could not additional learning and efficient structure modification. Furthermore, we knew that the estimation accuracy of travel time is superior to optimum located detectors than based on existing located detectors. We can expect the results of this study will make use of location allocation of detectors in highway.

Location Estimation for Multiple Targets Using Tree Search Algorithms under Cooperative Surveillance of Multiple Robots (다중로봇 협업감시 시스템에서 트리 탐색 기법을 활용한 다중표적 위치 좌표 추정)

  • Park, So Ryoung;Noh, Sanguk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.9
    • /
    • pp.782-791
    • /
    • 2013
  • This paper proposes the location estimation techniques of distributed targets with the multi-sensor data perceived through IR sensors of the military robots. In order to match up targets with measured azimuths, we apply the maximum likelihood (ML), depth-first, and breadth-first tree search algorithms, in which we use the measured azimuths and the number of pixels on IR screen for pruning branches and selecting candidates. After matching up targets with azimuths, we estimate the coordinate of each target by obtaining the intersection point of the azimuths with the least square error (LSE) algorithm. The experimental results show the probability of missing target, mean of the number of calculating nodes, and mean error of the estimated coordinates of the proposed algorithms.

Estimation of Person Height and 3D Location using Stereo Tracking System (스테레오 추적 시스템을 이용한 보행자 높이 및 3차원 위치 추정 기법)

  • Ko, Jung Hwan;Ahn, Sung Soo
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.8 no.2
    • /
    • pp.95-104
    • /
    • 2012
  • In this paper, an estimation of person height and 3D location of a moving person by using the pan/tilt-embedded stereo tracking system is suggested and implemented. In the proposed system, face coordinates of a target person is detected from the sequential input stereo image pairs by using the YCbCr color model and phase-type correlation methods and then, using this data as well as the geometric information of the stereo tracking system, distance to the target from the stereo camera and 3-dimensional location information of a target person are extracted. Basing on these extracted data the pan/tilt system embedded in the stereo camera is controlled to adaptively track a moving person and as a result, moving trajectory of a target person can be obtained. From some experiments using 780 frames of the sequential stereo image pairs, it is analyzed that standard deviation of the position displacement of the target in the horizontal and vertical directions after tracking is kept to be very low value of 1.5, 0.42 for 780 frames on average, and error ratio between the measured and computed 3D coordinate values of the target is also kept to be very low value of 0.5% on average. These good experimental results suggest a possibility of implementation of a new stereo target tracking system having a high degree of accuracy and a very fast response time with this proposed algorithm.

An Adaptive Block Matching Motion Estimation Method Using Optical Flow (광류를 이용한 적응적인 블록 정합 움직임 추정 기법)

  • Kim, Kyoung-Kyoo;Park, Kyung-Nam
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.13 no.1
    • /
    • pp.57-67
    • /
    • 2008
  • In this paper, we present an adaptive block matching motion estimation using optical flow. In the proposed algorithm, we calculate the temporal and spatial gradient value for each pixel value from tile differential filter, and estimate the optical flow which is used to decide the location and the size of the search region from the gradient values by least square optical flow algorithm. In particular, the proposed algorithm showed a excellent performance with fast and complex motion sequences. From the computer simulation for various motion characteristic sequences. The proposed algorithm shows a significant enhancement of PSNR over previous blocking matching algorithms.

  • PDF

A Hardwired Location-Aware Engine based on Weighted Maximum Likelihood Estimation for IoT Network (IoT Network에서 위치 인식을 위한 가중치 방식의 최대우도방법을 이용한 하드웨어 위치인식엔진 개발 연구)

  • Kim, Dong-Sun;Park, Hyun-moon;Hwang, Tae-ho;Won, Tae-ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.11
    • /
    • pp.32-40
    • /
    • 2016
  • IEEE 802.15.4 is the one of the protocols for radio communication in a personal area network. Because of low cost and low power communication for IoT communication, it requires the highest optimization level in the implementation. Recently, the studies of location aware algorithm based on IEEE802.15.4 standard has been achieved. Location estimation is performed basically in equal consideration of reference node information and blind node information. However, an error is not calculated in this algorithm despite the fact that the coordinates of the estimated location of the blind node include an error. In this paper, we enhanced a conventual maximum likelihood estimation using weighted coefficient and implement the hardwired location aware engine for small code size and low power consumption. On the field test using test-beds, the suggested hardware based location awareness method results better accuracy by 10 percents and reduces both calculation and memory access by 30 percents, which improves the systems power consumption.

A Stay Detection Algorithm Using GPS Trajectory and Points of Interest Data

  • Eunchong Koh;Changhoon Lyu;Goya Choi;Kye-Dong Jung;Soonchul Kwon;Chigon Hwang
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.176-184
    • /
    • 2023
  • Points of interest (POIs) are widely used in tourism recommendations and to provide information about areas of interest. Currently, situation judgement using POI and GPS data is mainly rule-based. However, this approach has the limitation that inferences can only be made using predefined POI information. In this study, we propose an algorithm that uses POI data, GPS data, and schedule information to calculate the current speed, location, schedule matching, movement trajectory, and POI coverage, and uses machine learning to determine whether to stay or go. Based on the input data, the clustered information is labelled by k-means algorithm as unsupervised learning. This result is trained as the input vector of the SVM model to calculate the probability of moving and staying. Therefore, in this study, we implemented an algorithm that can adjust the schedule using the travel schedule, POI data, and GPS information. The results show that the algorithm does not rely on predefined information, but can make judgements using GPS data and POI data in real time, which is more flexible and reliable than traditional rule-based approaches. Therefore, this study can optimize tourism scheduling. Therefore, the stay detection algorithm using GPS movement trajectories and POIs developed in this study provides important information for tourism schedule planning and is expected to provide much value for tourism services.

Shape and location estimation using prior information obtained from the modified Newton-Raphson method

  • Jeon, H.J.;Kim, J.H.;Choi, B.Y.;Kim, M.C.;Kim, S.;Lee, Y.J.;Kim, K.Y.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.570-574
    • /
    • 2003
  • In most boundary estimation algorithms estimation in EIT (Electrical Impedance Tomography), anomaly boundaries can be expressed with Fourier series and the unknown coefficients are estimated with proper inverse algorithms. Furthermore, the number of anomalies is assumed to be available a priori. The prior knowledge on the number of anomalies may be unavailable in some cases, and we need to determine the number of anomalies with other methods. This paper presents an algorithm for the boundary estimation in EIT (Electrical Impedance Tomography) using the prior information from the conventional Newton-Raphson method. Although Newton-Raphson method generates so poor spatial resolution that the anomaly boundaries are hardly reconstructed, even after a few iterations it can give general feature of the object to be imaged such as the number of anomalies, their sizes and locations, as long as the anomalies are big enough. Some numerical experiments indicate that the Newton-Raphson method can be used as a good predictor of the unknown boundaries and the proposed boundary discrimination algorithm has a good performance.

  • PDF

A Signal Detection of Minimum Variance Algorithm on Linear Constraints

  • Kwan Hyeong Lee
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.8-13
    • /
    • 2023
  • We propose a method for removing interference and noise to estimate target information. In wireless channels, information signals are subject to interference and noise, making it is difficult to accurately estimate the desired signal. To estimate the desired information signal, it is essential to remove the noise and interference from the received signal, extracting only the desired signal. If the received signal noise and interference are not removed, the estimated information signal will have a large error in distance and direction, and the exact location of the target cannot be estimated. This study aims to accurately estimate the desired target in space. The objective is to achieve more presice target estimation than existing methods and enhance target resolution.An estimation method is proposed to improve the accuracy of target estimation. The proposed target estimation method obtains optimal weights using linear constraints and the minimum variance method. Through simulation, the performance of the proposed method and the existing method is analyzed. The proposed method successfully estimated all four targets, while the existing method only estimated two targets. The results show that the proposed method has better resolutiopn and superior estimation capability than the existing method.

A Moving Terminal's Coordinates Prediction Algorithm and an IoT Application

  • Kim, Daewon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.7
    • /
    • pp.63-74
    • /
    • 2017
  • Recently in the area of ICT, the M2M and IoT are in the spotlight as a cutting edge technology with the help of advancement of internet. Among those fields, the smart home is the closest area to our daily lives. Smart home has the purpose to lead a user more convenient living in the house with WLAN (Wireless Local Area Network) or other short-range communication environments using automated appliances. With an arrival of the age of IoT, this can be described as one axis of a variety of applications as for the M2H (Machine to Home) field in M2M. In this paper, we propose a novel technique for estimating the location of a terminal that freely move within a specified area using the RSSI (Received Signal Strength Indication) in the WLAN environment. In order to perform the location estimation, the Fingerprint and KNN methods are utilized and the LMS with the gradient descent method and the proposed algorithm are also used through the error correction functions for locating the real-time position of a moving user who is keeping a smart terminal. From the estimated location, the nearest fixed devices which are general electric appliances were supposed to work appropriately for self-operating of virtual smart home. Through the experiments, connection and operation success rate, and the performance results are analyzed, presenting the verification results.