• Title/Summary/Keyword: Location Error

Search Result 1,239, Processing Time 0.03 seconds

Local Heat Transfer Coefficients for Reflux Condensation Experiment in a Vertical Tube in the Presence of Noncondensible Gas

  • Moon, Young-Min;No, Hee-Cheon;Bang, Young-Seok
    • Nuclear Engineering and Technology
    • /
    • v.31 no.5
    • /
    • pp.486-497
    • /
    • 1999
  • The local heat transfer coefficient is experimentally investigated for the reflux condensation in a countercurrent flow between the steam-air mixture and the condensate, A single vertical tube has a geometry which is a length of 2.4m, inner diameter of 16.56mm and outer diameter of 19.05mm and is made of stainless steel. Air is used as a noncondensible gas. The secondary side has a shape of annulus around vertical tube and the lost heat by primary condensation is transferred to the coolant water. The local temperatures are measured at 11 locations in the vertical direction and each location has 3 measurement points in the radial direction, which are installed at the tube center, at the outer wall and at the coolant side. In three different pressures, the 27 sets of data are obtained in the range of inlet steam flow rate 1.348∼3.282kg/hr, of inlet air mass fraction 11.8∼55.0%. The investigation of the flooding is preceded to find the upper limit of the reflux condensation. Onset of flooding is lower than that of Wallis' correlation. The local heat transfer coefficient increases as the increase of inlet steam flow rate and decreases as the increase of inlet air mass fraction. As an increase of the system pressure, the active condensing region is contracted and the heat transfer capability in this region is magnified. The empirical correlation is developed by 165 data of the local heat transfer. As a result, the Jacob number and film Reynolds number are dominant parameters to govern the local heat transfer coefficient. The rms error is 17.7% between the results by the experiment and by the correlation.

  • PDF

Capacity Estimation Models for Work-zones Under Traffic Signal Influence and the Empirical Validation (신호영향권 하 도로공사구간에서의 용량산정모형 개발과 실증)

  • Shin, Chi-Hyun
    • Journal of Korean Society of Transportation
    • /
    • v.31 no.1
    • /
    • pp.77-86
    • /
    • 2013
  • This paper focuses on the development of analytical models for estimating the changes in saturation flow rates (SFR) at the stop-lines of a signalized intersection due to the existence of nearby work-zones, and thereby calculating the prevailing capacity values for specific lane groups. Major changes were incorporated in the logics of previous models and significant revisions have been made to secure the accuracy and simplicity. Furthermore, much attention was paid to model validation by making comparisons to both extensive simulation results and empirical data from various sites. It was found that SFRs are highly sensitive to the location of work-zones, the distance to each work-zone from the stop-line of a concerned approach, the number of lanes open and closed, and the effective green time. Using such geometric and operating conditions that constitute work-zone environment, the proposed models successfully estimated SFR values with a miniscule margin of error.

Reconstruction and Deconvolution of X-Ray Backscatter Data Using Adaptive Filter (적응필터를 이용한 적층 복합재료에서의 역산란 X-Ray 신호처리 및 복원)

  • Kim, Noh-Yu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.6
    • /
    • pp.545-554
    • /
    • 2000
  • Compton X-ray backscatter technique has been used to quantitatively assess the impact damage in quasi-isotropic laminated composites and to obtain a cross-sectional profile of impact-damaged laminated composites from the density variation of the cross section. An adaptive filter is applied to the Compton backscattering data for the reconstruction and noise reduction from many sources including quantum noise, especially when the SNR(signal-to-noise ratio) of the image is relatively low. A nonlinear reconstruction model is also proposed to overcome distortion of the Compton backscatter image due to attenuation effects, beam hardening, and irregular distributions of the fibers and the matrix in composites. Delaminations masked or distorted by the first few delaminations near the front surface are detected and characterized both in width and location, by application of an error minimization algorithm.

  • PDF

Development of a High-Resolution Electrocardiography for the Detection of Late Potentials (Late Potential의 검출을 위한 고해상도 심전계의 개발)

  • 우응제;박승훈
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.4
    • /
    • pp.449-458
    • /
    • 1996
  • Most of the conventional electrocardiowaphs foil to detect signals other than P-QRS-T due to the limited SNR and bandwidth. High-resolution electrocardiography(HRECG) provides better SNR and wider bandwidth for the detection of micro-potentials with higher frequency components such as vontricular late potentials(LP). We have developed a HRECG using uncorrected XYZ lead for the detection of LPs. The overall gain of the amplifier is 4000 and the bandwidth is 0.5-300Hz without using 60Hz notch filter. Three 16-bit A/D converters sample X, Y, and Z signals simultaneously with a sampling frequency of 2000Hz. Sampled data are transmitted to a PC via a DMA-controlled, optically-coupled serial communication channel. In order to further reduce the noise, we implemented a signal averaging algorithm that averaged many instances of aligned beats. The beat alignment was carried out through the use of a template matching technique that finds a location maximizing cross-correlation with a given beat tem- plate. Beat alignment error was reduced to $\pm$0.25ms. FIR high-pass filter with cut-off frequency of 40Hz was applied to remove the low frequency components of the averaged X, Y, and Z signals. QRS onset and end point were determined from the vector magnitude of the sigrlaIL and some parameters needed to detect the existence of LP were estimated. The entire system was designed for the easy application of the future research topics including the optimal lead system, filter design, new parameter extraction, etc. In the developed HRECG, without signal averaging, the noise level was less than 5$\mu$V$_rms RTI$. With signal averaging of at least 100 beats, the noise level was reduced to 0.5$\mu$V$_rms RTI$, which is low enough to detect LPs. The developed HRECG will provide a new advanced functionality to interpretive ECG analyzers.

  • PDF

A Design of the Smart Control System for Industrial Automation Equipment (산업용 자동화 장비를 위한 스마트 제어 시스템 설계)

  • Kim, Bo-Hun;Kim, Hwang-Rae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.677-684
    • /
    • 2017
  • Smart devices are used in a variety of industries, because applications for them are easy to develop and portable. However, industrial equipment can cause security problems for information and accidents when controlling the actuator of the equipment at a remote location. In this paper, we studied methods of solving these problems and the advantages of applying smart control systems to industrial equipment. We propose a manual manipulation method using queries and a smart control access procedure for controlling equipment using a smart device. In addition, we propose a data transmission method employing multiple encryption protocols and a user authentication method using unique information from the smart device and Q & A as the communication data protection and user authentication methods, respectively. In order to evaluate its performance, an operation test of the smart control system and user authentication comparison experiment were performed. In order to understand the advantages of applying the smart control system to the equipment, we conducted a comparative experiment with a teach pendant and evaluated its reaction time in case of error.

Kyphotic Angle Measurement Accuracy for Vertebral Osteoporotic Compression Fracture; Reliable Method for Kyphotic Angle Measurement

  • Hong, Jae-Taek;Lee, Sang-Won;Son, Byung-Chul;Sung, Jae-Hoon;Park, Choon-Keun;Kim, Moon-Chan
    • Journal of Korean Neurosurgical Society
    • /
    • v.39 no.4
    • /
    • pp.256-259
    • /
    • 2006
  • Objective : Having a reliable and reproducible measurement technique to measure the sagittal contour in vertebral fractures is paramount to clinical decision making. This study is designed to determine the most reliable measurement technique in osteoporotic vertebral compression fracture. Methods : Fifteen lateral radiographs of thoracic and lumbar fractures were selected and measured on two separate occasions by three spine surgeons using six different measurement techniques [Centroid, Harrison Posterior Tangent Methods and 4 different types of modified Cobb method]. The radiograph quality was assessed and the center beam location was determined. Statistical analysis including ANOVA for repeated measures was carried out using the SAS software [v 8.0]. Results : The inter and intraobserver variance of the Cobb method 4 and Harrison posterior tangent method were significantly lower than the other four methods. The intraobserver correlation coefficients were the most consistent using the Cobb method 4 [0.982]. which was followed by the Harrison posterior tangent [0.953] and Cobb methods 1 [0.874]. The intraobserver agreement [% of repeated measures within 5 degrees of the original measurement] ranged from 42% to 98% for each technique for all three observers, with the Cobb method 4 showing the best agreement [97.8%] followed by the Harrison posterior tangent method [937%]. Conclusion : The Cobb method-4 and Harrison posterior tangent methods, when applied to measuring the kyphosis, are reliable and have a similar small error range. The Cobb method 4 shows the best overall reliability. However, the centroid method and Cobb method using a fractured endplate do not produce an accurate result due to inter and intraobserver differences in determining the baseline.

Structural Improvement for Crack of Integrated Circuit in Single Board Computer by Structure Analysis (단일보드컴퓨터 구조해석을 통한 집적회로 균열현상의 구조적 개선)

  • Ryu, Jeong-min;Lee, Yong-jun;Sohn, Kwonil
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.5
    • /
    • pp.460-465
    • /
    • 2019
  • In this study, we aim to derive a solution from the structural analysis for electrical failure of single board computers for computing navigation information. By analyzing the characteristic factor, we identify that crack occur on the central processing unit board due to a certain structural problem, and that the physical effect by the crack make communication function be impossible to perform, which it causes booting error. In order to find the location of excessive stress causing the crack, structural analysis for the single board computer is done. From the structural analysis, the areas where stress concentration occurs are identified, and improvement methods changing the structures are developed. As a result, we shows that stresses are reduced entirely on the stress distribution for the improved structure. In addition, heat analysis shows that changing the structure to reduce stresses is not affect to the heat radiation, and the thermal resistance of the actual equipment is verified by measuring the temperature of the heat sink applied with the improved structure.

The Monitoring System with PV Module-level Fault Diagnosis Algorithm (태양전지모듈 고장 진단 알고리즘을 적용한 모니터링시스템)

  • Ko, Suk-Whan;So, Jung-Hun;Hwang, Hye-Mi;Ju, Young-Chul;Song, Hyung-June;Shin, Woo-Gyun;Kang, Gi-Hwan;Choi, Jung-Rae;Kang, In-Chul
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.3
    • /
    • pp.21-28
    • /
    • 2018
  • The objects of PV (Photovoltaic) monitoring system is to reduce the loss of system and operation and maintenance costs. In case of PV plants with configured of centralized inverter type, only 1 PV module might be caused a large loss in the PV plant. For this reason, the monitoring technology of PV module-level that find out the location of the fault module and reduce the system losses is interested. In this paper, a fault diagnosis algorithm are proposed using thermal and electrical characteristics of PV modules under failure. In addition, the monitoring system applied with proposed algorithm was constructed. The wireless sensor using LoRa chip was designed to be able to connect with IoT device in the future. The characteristics of PV module by shading is not failure but it is treated as a temporary failure. In the monitoring system, it is possible to diagnose whether or not failure of bypass diode inside the junction box. The fault diagnosis algorithm are developed on considering a situation such as communication error of wireless sensor and empirical performance evaluation are currently conducting.

Self-driving quarantine robot with chlorine dioxide system (이산화염소 시스템을 적용한 자율주행 방역 로봇)

  • Bang, Gul-Won
    • Journal of Digital Convergence
    • /
    • v.19 no.12
    • /
    • pp.145-150
    • /
    • 2021
  • In order to continuously perform quarantine in public places, it is not easy to secure manpower, but using self-driving-based robots can solve problems caused by manpower. Self-driving-based quarantine robots can continuously prevent the spread of harmful viruses and diseases in public institutions and hospitals without additional manpower. The location of the autonomous driving function was estimated by applying the Pinnacle filter algorithm, and the UV sterilization system and chlorine dioxide injection system were applied for quarantine. The driving time is more than 3 hours and the position error is 0.5m.Soon, the stop-avoidance function was operated at 95% and the obstacle detection distance was 1.5 m, and the automatic charge recovery was charged by moving to the charging cradle at the remaining 10% of the battery capacity. As a result of quarantine with an unmanned quarantine system, UV sterilization is 99% and chlorine dioxide is sterilized more than 95%, which can contribute to reducing enormous social costs.

Method to Improve Localization and Mapping Accuracy on the Urban Road Using GPS, Monocular Camera and HD Map (GPS와 단안카메라, HD Map을 이용한 도심 도로상에서의 위치측정 및 맵핑 정확도 향상 방안)

  • Kim, Young-Hun;Kim, Jae-Myeong;Kim, Gi-Chang;Choi, Yun-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.1095-1109
    • /
    • 2021
  • The technology used to recognize the location and surroundings of autonomous vehicles is called SLAM. SLAM standsfor Simultaneously Localization and Mapping and hasrecently been actively utilized in research on autonomous vehicles,starting with robotic research. Expensive GPS, INS, LiDAR, RADAR, and Wheel Odometry allow precise magnetic positioning and mapping in centimeters. However, if it can secure similar accuracy as using cheaper Cameras and GPS data, it will contribute to advancing the era of autonomous driving. In this paper, we present a method for converging monocular camera with RTK-enabled GPS data to perform RMSE 33.7 cm localization and mapping on the urban road.