• 제목/요약/키워드: Locally Wall Thinned Pipe

검색결과 18건 처리시간 0.02초

3차원 유한요소해석을 이용한 엘보우의 감육 결함 특성 평가 (Evaluation on Failure Characteristics of the Local Wall Thinning Elbows Using Three Dimensional Finite Element Analysis)

  • 김태순;박치용;김진원;박재학
    • 한국안전학회지
    • /
    • 제18권3호
    • /
    • pp.39-45
    • /
    • 2003
  • The failure mode of a pipe due to local wall thinning is increasingly more attention in the nuclear power plant industry. To assess the integrity of locally wall thinned pipe, it is necessary to perform many simulations under various conditions. Because the modeling for locally wall thinned elbow is more complicated than that of straight pipe the efficient modeling method for finite element analysis is necessary. In this study, the more simple efficient modeling method of three-dimensional finite element analysis for locally wall thinned elbow has been suggested and verified. And using the method, the failure mode of local wall thinned elbows that have different thinning lengths and circumferential angles is evaluated. From the results, we concluded that the collapse load of elbows has been decreased by the increase of wall thinning shape factors such as thinning lengths and circumferential angles.

내압과 굽힘의 복합하중에서 내부 감육배관의 손상기준 (Criterion for Failure of Internally Wall Thinned Pipe Under a Combined Pressure and Bending Moment)

  • 김진원;박치용
    • 한국안전학회지
    • /
    • 제17권4호
    • /
    • pp.52-60
    • /
    • 2002
  • Failure criterion is a parameter to represent the resistance to failure of locally wall thinned pipe, and it depends on material characteristics, defect geometry, applied loading type, and failure mode. Therefore, accurate prediction of integrity of wall thinned pipe requires a failure criterion adequately reflected the characteristics of defect shape and loading in the piping system. In the present study, the finite element analysis was performed and the results were compared with those of pipe experiment to develop a sound criterion for failure of internally wall thinned pipe subjected to combined pressure and bending loads. By comparing the predictions of failure to actual failure load and displacement, an appropriate criterion was investigated. From this investigation, it is concluded that true ultimate stress criterion is the most accurate to predict failure of wall thinned pipe under combined loads, but it is not conservative under some conditions. Engineering ultimate stress estimates the failure load and displacement reasonably for al conditions, although the predictions are less accurate compared with the results predicted by true ultimate stress criterion.

내압과 굽힘하중하에서 감육배관의 국부허용두께 평가 (Evaluation of Local Allowable Wall Thickness of Thinned Pipe Subjected to Internal Pressure and Bending Moment)

  • 김진원;박치용;김범년
    • 대한기계학회논문집A
    • /
    • 제25권1호
    • /
    • pp.81-88
    • /
    • 2001
  • This study proposed an analytical method to evaluate a local allowable wall thickness (LAWT) for locally thinned pipe subjected to internal pressure and bending moment. In this method, the stresses in the thinned region were calculated by finite element analysis and plastic collapse was applied as a failure criterion of thinned pipe. Using this method, LAWT for a simplified thinned pipe was evaluated with variation in axial extent of thinned area, and it was compared with allowable wall thickness provided by previous pipe wall thickness criteria. The results showed that the LAWT was lower, about 50%, than that calculated by construction code or ASME Code N-597, and it was higher, about 2 times, than that estimated by evaluation model based on pipe experiments. In addition, LAWT was decreased with increasing axial extent of thinned area and saturated with further increase in axial extent. And, the variation in LAWT with axial extent of thinned area depended on type of load, especially a magnitude of bending moment, considering in the evaluation.

복합하중이 작용하는 국부감육배관 평가법 개발 (Development of Assessment Methodology for Locally Wall-Thinned Pipe Under Combined Loading)

  • 심도준;김윤재;김영진;박치용
    • 대한기계학회논문집A
    • /
    • 제29권10호
    • /
    • pp.1399-1406
    • /
    • 2005
  • Recently authors have proposed a new method to estimate failure strength of a pipe with local wall thinning subject to either internal pressure or global bending. The proposed method was based on the equivalent stress averaged over the minimum ligament in the locally wall thinned region, and the simple scheme to estimate the equivalent stress in the minimum ligament was proposed, based on the reference stress concept. This paper extends the new method to combined internal pressure and global bending. The proposed method is validated against FE results for various geometries of local wall thinning under combined loading. The effect of internal pressure is also investigated in the present study. Comparison of maximum moments, predicted according to the proposed method, with published full-scale pipe test data fur locally wall-thinned pipes under combined internal pressure and global bending, shows good agreement.

감육 곡관의 붕괴거동에 미치는 곡관 굽힘각의 영향 (Effect of Bend Angle on the Collapse Behavior of Locally Wall Thinned Pipe Bends)

  • 나만균;김진원
    • 대한기계학회논문집A
    • /
    • 제30권10호
    • /
    • pp.1269-1275
    • /
    • 2006
  • The purpose of this study is to investigate the effect of bend angle on the collapse behavior of locally wall thinned pipe bends. For this purpose, the present study performed three-dimensional finite element analysis on the 30-, 60-, and 90-degree pipe bends with local wall thinning at the center of intrados, extrados, and crown, and evaluated the collapse moment for different thinning dimensions under closing- and opening-mode bending with a constant internal pressure. The results showed that, for intrados and extrados wall thinning, the reduction in the collapse moment due to local wall thinning became significant with decreasing bend angle of pipe bends. This effect of bend angle was enhanced with increasing thinning dimensions, and it was clearer fur opening-mode bending than for closing-mode bending. For crown wall thinning, however, the effect of bend angle was unclear and was less sensitive to the change of wall thinning shapes.

참조응력개념을 이용한 국부감육배관 평가법 개발 (Development of Assessment Methodology for Locally Corroded Pipe Using Reference Stress Concept)

  • 임환;심도준;김윤재;김영진
    • 대한기계학회논문집A
    • /
    • 제27권7호
    • /
    • pp.1200-1209
    • /
    • 2003
  • In this paper, a unified methodology based on the local stress concept to estimate residual strength of locally thinned pipes. An underlying idea of the proposed methodology is that the local stress in the minimum section for locally thinned pipe is related to the reference stress, popularly used in creep problems. Then the problem remains how to define the reference stress, that is the reference load. Extensive three-dimensional finite element (FE) analyses were performed to simulate full-scale pipe tests conducted for various shapes of wall thinned area under internal pressure and bending moment. Based on these FE results, the reference load is proposed, which is independent of materials. A natural outcome of this method is the maximum load capacity. By comparing with existing test results, it is shown that the reference stress is related to the fracture stress, which in turn can be posed as the fracture criterion of locally thinned pipes. The proposed method is powerful as it can be easily generalised to more complex problems, such as pipe bends and tee-joints.

실배관 파열실험을 통한 국부감육 곡관 손상압력 평가 (Failure Pressure Evaluation of Local Wall-Thinned Elbows by Real-scale Burst Tests)

  • 김진원;박치용;이성호
    • 대한기계학회논문집A
    • /
    • 제31권10호
    • /
    • pp.1017-1024
    • /
    • 2007
  • This study performed a series of burst tests at ambient temperature using real-scale elbow specimen containing a local wall-thinning defect at it's intrados or extrados and evaluated failure pressure of locally wall-thinned elbows. In the experiment, a 90-degree 100A, Sch. 80 standard elbow was employed, and various wall-thinning geometries, such as length, depth, and circumferential angle, were considered. From the results of experiment, the dependences of failure pressure of wall-thinned elbows on the defect geometries and locations were investigated. In addition, the reliability of existing models was examined by comparing the tests data with the results predicted from existing failure pressure evaluation models for locally wall-thinned elbow.

감육형상 및 내압이 원자력 감육배관의 파단에 미치는 영향 -내압과 굽힘모멘트가 동시에 작용하는 경우- (Effect of Wall Thinned Shape and Pressure on Failure of Wall Thinned Nuclear Piping Under Combined Pressure and Bending Moment)

  • 심도준;임환;최재붕;김영진;김진원;박치용
    • 대한기계학회논문집A
    • /
    • 제27권5호
    • /
    • pp.742-749
    • /
    • 2003
  • Failure of a pipeline due to local wall thinning is getting more attention in the nuclear power plant industry. Although guidelines such as ANSI/ASME B31G and ASME Code Case N597 are still useful fer assessing the integrity of a wall thinned pipeline, there are some limitations in these guidelines. For instance, these guidelines consider only pressure loading and thus neglect bending loading. However, most Pipelines in nuclear power plants are subjected to internal pressure and bending moment due to dead-weight loads and seismic loads. Therefore, an assessment procedure for locally wall thinned pipeline subjected to combined loading is needed. In this paper, three-dimensional finite element(FE) analyses were performed to simulate full-scale pipe tests conducted for various shapes of wall thinned area under internal pressure and bending moment. Maximum moments based on true ultimate stress(${\alpha}$$\sub$u,t/) were obtained from FE results to predict the failure of the pipe. These results were compared with test results, which showed good agreement. Additional finite element analyses were performed to investigate the effect of key parameters, such as wall thinned depth, wall thinned angle and wall thinned length, on maximum moment. Also, the effect of internal pressure on maximum moment was investigated. Change of internal pressure did not show significant effect on the maximum moment.

국부 감육이 배관 굽힘 컴플라이언스에 미치는 영향 (Effect of Local Wall Thinning on Pipe Elastic Bending Compliance )

  • 서기완;김재민;김윤재
    • 한국압력기기공학회 논문집
    • /
    • 제17권2호
    • /
    • pp.83-89
    • /
    • 2021
  • The thickness of pipe can be locally reduced during operation due to wall thinning. Due to its significance on structural integrity, many non-destructive detecting techniques and assessment methods are available. In this study, the elastic bending compliance of local wall-thinned pipe is presented in terms of the wall thinning geometry: wall thinning depth, circumferential angle and longitudinal length. Elastic finite element (FE) analysis further shows that the presented equation can be used for any wall thinning shape. The proposed solution differs from FE results by less than 6% for all cases analyzed. The bending compliance increases linearly with increasing longitudinal thinning length and non-linearly with increasing thinning angle and depth.

원주 방향 두께가 불균일한 배관의 진동 모드 특성을 이용한 배관 감육 검사 기법 연구 (Pipe Wall-Thinning Inspection using Vibration Modes of Pipes with Circumferentially Varying Thickness)

  • 한순우;서정석;박진호
    • 한국가스학회지
    • /
    • 제21권1호
    • /
    • pp.18-26
    • /
    • 2017
  • 현재의 초음파 두께 측정에 기반한 배관 감육 검사 속도를 개선하기 위해 배관 쉘 진동 모드의 고유 진동수 변화를 이용한 감육 검사 기법을 제안하였다. 감육이 발생한 부위의 축방향 수직 단면의 두께는 원주 방향을 따라 불균일하게 변화하는데, 두께가 균일한 경우에 비해 쉘 모드의 고유 진동수가 감소하거나 두 개 이상으로 분기됨을 확인하였다. 배관의 고유 진동수는 한 번의 측정으로도 평가할 수 있으므로, 제안한 방법을 이용하면 축방향 수직 단면의 평균 두께 변화를 빠르게 확인할 수 있어 초음파 두께 측정 방식에 비해 신속한 감육 검사가 가능하다. 본 논문에서는 제안 기법의 원리를 설명하고, 2차원과 3차원 감육 배관 모델 및 시편을 이용한 전산 해석과 실험을 통해 제안한 기법의 적용성을 검증하였다.