• Title/Summary/Keyword: Local weather information

Search Result 168, Processing Time 0.026 seconds

A Study on the Improvement of Response System through the Case of Heavy Rain Disaster Response (폭우재난 대응 사례를 통한 대응체계 개선방안 연구)

  • Woo Sub Shim;Sang Beam Kim
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.3
    • /
    • pp.597-607
    • /
    • 2023
  • Purpose: The Ministry of Employment and Labor has been working hard to ensure the safety of workers due to heavy rain during natural disasters as the responsible ministry in charge of preventing industrial accidents and health problems for workers. Accordingly, the Ministry of Employment and Labor intends to analyze actual cases of responding to heavy rain disasters and suggest ways to improve the response system. Method: An emergency response system implemented to respond to heavy rain disasters with an internal expert group composed of those in charge of disaster work at headquarters, local government offices, and Korea Occupational Safety and Health Agency, and an external expert group composed of professors, consulting representatives, and disaster managers from other ministries. Contents on self-inspection by industry, workplace inspection, use of serious siren, safety management and restoration work guidance were reviewed. Result: First of all, it is necessary to check the regular contact system from time to time, and it is also necessary to prepare and distribute detailed self-checklists for each industry. In addition, it is necessary to check the implementation of self-inspection when inspecting workplaces, and it seems necessary to have measures to increase the readability of information notified through serious disaster sirens. In addition, since safety work is done in the form of a contract, it seems necessary to prepare specific safety guidelines. Conclusion: In order to protect the lives of workers due to seasonal harm and risk factors, unlike the passive coping methods of the past, abnormal weather should not be regarded as an unexpected situation, and it should be actively and preemptively responding beyond the conventional framework.

Susceptibility Mapping of Umyeonsan Using Logistic Regression (LR) Model and Post-validation through Field Investigation (로지스틱 회귀 모델을 이용한 우면산 산사태 취약성도 제작 및 현장조사를 통한 사후검증)

  • Lee, Sunmin;Lee, Moung-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_2
    • /
    • pp.1047-1060
    • /
    • 2017
  • In recent years, global warming has been continuing and abnormal weather phenomena are occurring frequently. Especially in the 21st century, the intensity and frequency of hydrological disasters are increasing due to the regional trend of water. Since the damage caused by disasters in urban areas is likely to be extreme, it is necessary to prepare a landslide susceptibility maps to predict and prepare the future damage. Therefore, in this study, we analyzed the landslide vulnerability using the logistic model and assessed the management plan after the landslide through the field survey. The landslide area was extracted from aerial photographs and interpretation of the field survey data at the time of the landslides by local government. Landslide-related factors were extracted topographical maps generated from aerial photographs and forest map. Logistic regression (LR) model has been used to identify areas where landslides are likely to occur in geographic information systems (GIS). A landslide susceptibility map was constructed by applying a LR model to a spatial database constructed through a total of 13 factors affecting landslides. The validation accuracy of 77.79% was derived by using the receiver operating characteristic (ROC) curve for the logistic model. In addition, a field investigation was performed to validate how landslides were managed after the landslide. The results of this study can provide a scientific basis for urban governments for policy recommendations on urban landslide management.

Development of a Oak Pollen Emission and Transport Modeling Framework in South Korea (한반도 참나무 꽃가루 확산예측모델 개발)

  • Lim, Yun-Kyu;Kim, Kyu Rang;Cho, Changbum;Kim, Mijin;Choi, Ho-seong;Han, Mae Ja;Oh, Inbo;Kim, Baek-Jo
    • Atmosphere
    • /
    • v.25 no.2
    • /
    • pp.221-233
    • /
    • 2015
  • Pollen is closely related to health issues such as allergenic rhinitis and asthma as well as intensifying atopic syndrome. Information on current and future spatio-temporal distribution of allergenic pollen is needed to address such issues. In this study, the Community Multiscale Air Quality Modeling (CMAQ) was utilized as a base modeling system to forecast pollen dispersal from oak trees. Pollen emission is one of the most important parts in the dispersal modeling system. Areal emission factor was determined from gridded areal fraction of oak trees, which was produced by the analysis of the tree type maps (1:5000) obtained from the Korea Forest Service. Daily total pollen production was estimated by a robust multiple regression model of weather conditions and pollen concentration. Hourly emission factor was determined from wind speed and friction velocity. Hourly pollen emission was then calculated by multiplying areal emission factor, daily total pollen production, and hourly emission factor. Forecast data from the KMA UM LDAPS (Korea Meteorological Administration Unified Model Local Data Assimilation and Prediction System) was utilized as input. For the verification of the model, daily observed pollen concentration from 12 sites in Korea during the pollen season of 2014. Although the model showed a tendency of over-estimation in terms of the seasonal and daily mean concentrations, overall concentration was similar to the observation. Comparison at the hourly output showed distinctive delay of the peak hours by the model at the 'Pocheon' site. It was speculated that the constant release of hourly number of pollen in the modeling framework caused the delay.

A Study on Development of Experimental Contents Using 3-channel Multi-Image Playback Technique: Based on transparent OLED and dual layer display system (3채널 멀티 영상 재생 기법과 증강현실을 이용한 체험 콘텐츠 제작에 관한 연구: 투명 OLED 및 듀얼 레이어 디스플레이 시스템 기반)

  • Lee, Sang-Hyun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.6
    • /
    • pp.151-160
    • /
    • 2017
  • Among the methods of developing tourist spots and culture as the experience contents, it is a common method to display high-quality video images on a large display, and it is necessary to make a special difference between the participant's active participation and the visual experience in other regions. In this paper, using the single molecular OLED and active type, the regional tourist spots blend transparent OLED dual-layer display systems with the extended image implementation and augmented interaction techniques to give the participants a real-world experience, such as directing to new experiences and beautiful sights. In this paper, additional images and UI layers are applied to the layers of the images to allow visitors to experience sightseeing information, weather, maps, accommodations, festivals and photo materials with image. In addition to the dual-layer system, it also added a multi-display system that additionally has one vertical 55-inch display on each side, adding to the experience the immersive experience and interface interlocking fun. By using transparent OLED, dual layer panel and 3-channel Multi-image playback technique, the augmented type experience contents which can experience the local attractions in Jeollanamdo province in Korea at all time without any limitation of time and space were developed.

A Study on the Effect of Ground-based GPS Data Assimilation into Very-short-range Prediction Model (초단기 예측모델에서 지상 GPS 자료동화의 영향 연구)

  • Kim, Eun-Hee;Ahn, Kwang-Deuk;Lee, Hee-Choon;Ha, Jong-Chul;Lim, Eunha
    • Atmosphere
    • /
    • v.25 no.4
    • /
    • pp.623-637
    • /
    • 2015
  • The accurate analysis of water vapor in initial of numerical weather prediction (NWP) model is required as one of the necessary conditions for the improvement of heavy rainfall prediction and reduction of spin-up time on a very-short-range forecast. To study this effect, the impact of a ground-based Global Positioning System (GPS)-Precipitable Water Vapor (PWV) on very-short-range forecast are examined. Data assimilation experiments of GPS-PWV data from 19 sites over the Korean Peninsula were conducted with Advanced Storm-scale Analysis and Prediction System (ASAPS) based on the Korea Meteorological Administration's Korea Local Analysis and Prediction System (KLAPS) included "Hot Start" as very-short-range forecast system. The GPS total water vapor was used as constraint for integrated water vapor in a variational humidity analysis in KLAPS. Two simulations of heavy rainfall events show that the precipitation forecast have improved in terms of ETS score compared to the simulation without GPS-PWV data. In the first case, the ETS for 0.5 mm of rainfall accumulated during 3 hrs over the Seoul-Gyeonggi area shows an improvement of 0.059 for initial forecast time. In other cases, the ETS improved 0.082 for late forecast time. According to a qualitative analysis, the assimilation of GPS-PWV improved on the intensity of precipitation in the strong rain band, and reduced overestimated small amounts of precipitation on the out of rain band. In the case of heavy rainfall during the rainy season in Gyeonggi province, 8 mm accompanied by the typhoon in the case was shown to increase to 15 mm of precipitation in the southern metropolitan area. The GPS-PWV assimilation was extremely beneficial to improving the initial moisture analysis and heavy rainfall forecast within 3 hrs. The GPS-PWV data on variational data assimilation have provided more useful information to improve the predictability of precipitation for very short range forecasts.

Molecular epidemiologic trends of norovirus and rotavirus infection and relation with climate factors: Cheonan, Korea, 2010-2019 (노로바이러스 및 로타바이러스 감염의 역학 및 기후요인과의 관계: 천안시, 2010-2019)

  • Oh, Eun Ju;Kim, Jang Mook;Kim, Jae Kyung
    • Journal of Digital Convergence
    • /
    • v.18 no.12
    • /
    • pp.425-434
    • /
    • 2020
  • Background: Viral infection outbreaks are emerging public health concerns. They often exhibit seasonal patterns that could be predicted by the application of big data and bioinformatic analyses. Purpose: The purpose of this study was to identify trends in diarrhea-causing viruses such as rotavirus (Gr.A), norovirus G-I, and norovirus G-II in Cheonan, Korea. The identified related factors of diarrhea-causing viruses may be used to predict their trend and prevent their infections. Method: A retrospective analysis of 4,009 fecal samples from June 2010 to December 2019 was carried out at Dankook University Hospital in Cheonan. Reverse transcription-PCR (RT-PCR) was employed to identify virus strains. Information about seasonal patterns of infection was extracted and compared with local weather data. Results: Out of the 4,009 fecal samples tested using multiplex RT-PCR (mRT-PCR), 985 were positive for infection with Gr.A, G-I, and G-II. Out of these 985 cases, 95.3% (n = 939) were under 10 years of age. Gr.A, G-I, and G-II showed high infection rates in patients under 10 years of age. Student's t-test showed a significant correlation between the detection rate of Gr.A and the relative humidity. The detection rate of G-II significantly correlated with wind-chill temperature. Conclusion: Climate factors differentially modulate rotavirus and norovirus infection patterns. These observations provide novel insights into the seasonal impact on the pathogenesis of Gr.A, G-I, and G-II.

A Numerical Study on the Characteristics of Flows and Fine Particulate Matter (PM2.5) Distributions in an Urban Area Using a Multi-scale Model: Part I - Analysis of Detailed Flows (다중규모 모델을 이용한 도시 지역 흐름과 초미세먼지(PM2.5) 분포 특성 연구: Part I - 상세 흐름 분석)

  • Park, Soo-Jin;Choi, Wonsik;Kim, Jae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_3
    • /
    • pp.1643-1652
    • /
    • 2020
  • To investigate the characteristics of detailed flows in a building-congested district, we coupled a computation fluid dynamics (CFD) model to the local data assimilation and prediction system (LDAPS), a current operational numerical weather prediction model of the Korea Meteorological Administration. For realistic numerical simulations, we used the meteorological variables such as wind speeds and directions and potential temperatures predicted by LDAPS as the initial and boundary conditions of the CFD model. We trilinearly interpolated the horizontal wind components of LDAPS to provide the initial and boudnary wind velocities to the CFD model. The trilinearly interpolated potential temperatures of LDAPS is converted to temperatures at each grid point of the CFD model. We linearly interpolated the horizontal wind components of LDAPS to provide the initial and boundary wind velocities to the CFD model. The linearly interpolated potential temperatures of LDAPS are converted to temperatures at each grid point of the CFD model. We validated the simulated wind speeds and directions against those measured at the PKNU-SONIC station. The LDAPS-CFD model reproduced similar wind directions and wind speeds measured at the PKNU-SONIC station. At 07 LST on 22 June 2020, the inflow was east-north-easterly. Flow distortion by buildings resulted in the east-south-easterly at the PKNU-SONIC station, which was the similar wind direction to the measured one. At 19 LST when the inflow was southeasterly, the LDAPS-CFD model simulated southeasterly (similar to the measured wind direction) at the PKNU-SONIC station.

Generation and Verification of Synthetic Wind Data With Seasonal Fluctuation Using Hidden Markov Model (은닉 마르코프 모델을 이용하여 계절의 변동을 동반한 인공 바람자료 생성 및 검증)

  • Park, Seok-Young;Ryu, Ki-Wahn
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.12
    • /
    • pp.963-969
    • /
    • 2021
  • The wind data measured from local meteorological masts is used to evaluate wind speed distribution and energy production in the specified site for wind farm However, wind data measured from meteorological masts often contain missing information or insufficient desired height or data length, making it difficult to perform wind turbine control and performance simulation. Therefore, long-term continuous wind data is very important to assess the annual energy production and the capacity factor for wind turbines or wind farms. In addition, if seasonal influences are distinct, such as on the Korean Peninsula, wind data with seasonal characteristics should be considered. This study presents methodologies for generating synthetic wind that take into account fluctuations in both wind speed and direction using the hidden Markov model, which is a statistical method. The wind data for statistical processing are measured at Maldo island in the Kokunnsan-gundo, Jeonbuk Province using the Automatic Weather System (AWS) of the Korea Meteorological Administration. The synthetic wind generated using the hidden Markov model will be validated by comparing statistical variables, wind energy density, seasonal mean speed, and prevailing wind direction with measurement data.

Road Sign Function Diversification Strategy to Respond to Changes in the Future Traffic Environment : Focusing on Citizens' Usability of Road Signs (미래 교통환경 변화 대응을 위한 도로표지 기능 다변화 전략: 시민의 도로표지 활용성을 중심으로)

  • Choi, Woo-Chul;Cheong, Kyu-Soo;Na, Joon-Yeop
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.3
    • /
    • pp.30-41
    • /
    • 2022
  • With the advent of autonomous driving, personal mobility, drones, and smart roads, it is necessary to respond to changes in the road traffic environment in the road guidance system. However, the use of road signs to guide the road is decreasing compared to the past due to the advent of devices such as navigation and smartphones. Therefore, in this study, a large-scale survey was conducted to derive road sign issues and usage plans to respond to future changes. Based on this, this study presented a strategy to diversify road sign functions by analyzing the factors affecting the use of road signs by citizens. As a result, first, it is necessary to provide real-time variable road guidance information that reflects user needs such as traffic, weather, and local events. Second, it is necessary to informatize digital road signs such as reflecting maps with precision. Third, it is necessary to demonstrate road guidance in a virtual environment that reflects various future mobility and road environments.

Opening New Horizons with the L4 Mission: Vision and Plan

  • Kyung-Suk Cho;Junga Hwang;Jeong-Yeol Han;Seong-Hwan Choi;Sung-Hong Park;Eun-Kyung Lim;Rok-Soon Kim;Jungjoon Seough;Jong-Dae Sohn;Donguk Song;Jae-Young Kwak;Yukinaga Miyashita;Ji-Hye Baek;Jaejin Lee;Jinsung Lee;Kwangsun Ryu;Jongho Seon;Ho Jin;Sung-Jun Ye;Yong-Jae, Moon;Dae-Young Lee;Peter H. Yoon;Thiem Hoang;Veerle Sterken;Bhuwan Joshi;Chang-Han Lee;Jongjin Jang;Jae-Hwee Doh;Hwayeong Kim;Hyeon-Jeong Park;Natchimuthuk Gopalswamy;Talaat Elsayed;John Lee
    • Journal of The Korean Astronomical Society
    • /
    • v.56 no.2
    • /
    • pp.263-275
    • /
    • 2023
  • The Sun-Earth Lagrange point L4 is considered as one of the unique places where the solar activity and heliospheric environment can be observed in a continuous and comprehensive manner. The L4 mission affords a clear and wide-angle view of the Sun-Earth line for the study of the Sun-Earth and Sun-Moon connections from he perspective of remote-sensing observations. In-situ measurements of the solar radiation, solar wind, and heliospheric magnetic field are critical components necessary for monitoring and forecasting the radiation environment as it relates to the issue of safe human exploration of the Moon and Mars. A dust detector on the ram side of the spacecraft allows for an unprecedented detection of local dust and its interactions with the heliosphere. The purpose of the present paper is to emphasize the importance of L4 observations as well as to outline a strategy for the planned L4 mission with remote and in-situ payloads onboard a Korean spacecraft. It is expected that the Korean L4 mission can significantly contribute to improving the space weather forecasting capability by enhancing the understanding of heliosphere through comprehensive and coordinated observations of the heliosphere at multi-points with other existing or planned L1 and L5 missions.