DOI QR코드

DOI QR Code

로지스틱 회귀 모델을 이용한 우면산 산사태 취약성도 제작 및 현장조사를 통한 사후검증

Susceptibility Mapping of Umyeonsan Using Logistic Regression (LR) Model and Post-validation through Field Investigation

  • 이선민 (한국환경정책.평가연구원 환경평가모니터링센터) ;
  • 이명진 (한국환경정책.평가연구원 환경평가모니터링센터)
  • Lee, Sunmin (Korea Environment Institute (KEI), Center for Environmental Assessment Monitoring) ;
  • Lee, Moung-Jin (Korea Environment Institute (KEI), Center for Environmental Assessment Monitoring)
  • 투고 : 2017.11.11
  • 심사 : 2017.12.07
  • 발행 : 2017.12.31

초록

현대사회에서 지속적으로 진행되고 있는 지구 온난화 현상은 비정상적인 기상 현상을 빈번히 발생시키고 있다. 특히 21세기에는 폭우와 같이 수문학적 측면에서 물의 특성이 전과 다르고, 수문학적 재해의 강도와 빈도가 증가하고 있다. 그 중 도시 지역에서는 재해로 인한 피해가 극대화될 가능성이 크기 때문에 피해를 대비하기 위한 재해에 대한 예측이 필요하다. 따라서 본 연구에서는 우리나라의 대표적인 도시 자연 재해인 산사태를 로지스틱 회귀(Logistic regression, LR) 모델을 이용하여 분석하고 현장조사를 통해 산사태 이후의 관리 현황을 조사 및 검증하였다. 현장조사 대상 지역은 기존에 산사태 발생지역 및 본 연구의 연구결과로부터 산사태 취약성이 높게 나타난 지역을 중심으로 수행하였다. 기존 산사태 발생지 데이터는 2011년 우면산 산사태 당시의 현장조사 자료 및 항공사진 비교분석을 통해 추출하였다. 산사태 관련 요인은 항공사진으로부터 제작된 지형도와 임상도에서 추출하였다. 산사태 취약성 지도는 산사태에 영향을 미치는 총 13개 요인을 통해 구성된 공간 데이터베이스에 LR 모델을 적용하여 제작되었다. 마지막으로 ROC(Receiver operating characteristic) 곡선을 이용해 산사태 취약성 지도를 검증한 결과 77.79%의 정확도를 나타냈다. 추가적으로, 연구결과에 나타난 산사태 취약지역에 대해 2011년 산사태 이후 산사태가 어떻게 관리되었는지를 확인하기 위해 현장조사를 수행하였다. 본 연구의 결과는 국내 도시 산사태 관리에 관한 정책 수립에 있어 과학적 근거로 활용할 수 있을 것으로 기대된다.

In recent years, global warming has been continuing and abnormal weather phenomena are occurring frequently. Especially in the 21st century, the intensity and frequency of hydrological disasters are increasing due to the regional trend of water. Since the damage caused by disasters in urban areas is likely to be extreme, it is necessary to prepare a landslide susceptibility maps to predict and prepare the future damage. Therefore, in this study, we analyzed the landslide vulnerability using the logistic model and assessed the management plan after the landslide through the field survey. The landslide area was extracted from aerial photographs and interpretation of the field survey data at the time of the landslides by local government. Landslide-related factors were extracted topographical maps generated from aerial photographs and forest map. Logistic regression (LR) model has been used to identify areas where landslides are likely to occur in geographic information systems (GIS). A landslide susceptibility map was constructed by applying a LR model to a spatial database constructed through a total of 13 factors affecting landslides. The validation accuracy of 77.79% was derived by using the receiver operating characteristic (ROC) curve for the logistic model. In addition, a field investigation was performed to validate how landslides were managed after the landslide. The results of this study can provide a scientific basis for urban governments for policy recommendations on urban landslide management.

키워드

참고문헌

  1. Beven, K. and M.J. Kirkby, 1979. A physically based, variable contributing area model of basin hydrology/Un modele a base physique de zone d'appel variable de l'hydrologie du bassin versant, Hydrological Sciences Journal, 24(1): 43-69. https://doi.org/10.1080/02626667909491834
  2. Bohner, J. and T. Selige, 2006. Spatial prediction of soil attributes using terrain analysis and climate regionalisation, Gottinger Geographische Abhandlungen, 115: 13-28.
  3. Choi, J., H.-J. Oh, H.-J. Lee, C. Lee, and S. Lee, 2012. Combining landslide susceptibility maps obtained from frequency ratio, logistic regression, and artificial neural network models using aster images and gis, Engineering Geology, 124: 12-23. https://doi.org/10.1016/j.enggeo.2011.09.011
  4. Conrad, O., B. Bechtel, M. Bock, H. Dietrich, E. Fischer, L. Gerlitz, J. Wehberg, V. Wichmann, and J. Böhner, 2015. System for automated geoscientific analyses (saga) v. 2.1.4, Geoscientific Model Development, 8: 1991-2007. https://doi.org/10.5194/gmd-8-1991-2015
  5. Cruden, D. and D. Varnes, 1996. Landslide types and processes., in, landslides: Investigation and mitigation, Transportation Research Board, 247: 36-75.
  6. Dai, F. C. and C.F. Lee, 2002. Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong, Geomorphology, 42(3): 213-228. https://doi.org/10.1016/S0169-555X(01)00087-3
  7. Devkota, K.C., A.D. Regmi, H.R. Pourghasemi, K. Yoshida, B. Pradhan, I.C. Ryu, M.R. Dhital, and O.F. Althuwaynee, 2013. Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in gis and their comparison at muglingnarayanghat road section in nepal himalaya, Natural Hazards, 65: 135-165. https://doi.org/10.1007/s11069-012-0347-6
  8. Hjerdt, K., J. McDonnell, J. Seibert, and A. Rodhe, 2004. A new topographic index to quantify downslope controls on local drainage, Water Resources Research, 40(5).
  9. Ko, S.M., S.W. Lee, C.-Y. Yune, and K. Kim, 2014. Topographic Analysis of Landslides in Umyeonsan, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography, 32(1): 55-62 (in Korean with English abstract). https://doi.org/10.7848/ksgpc.2014.32.1.55
  10. Korea Forest Service, 2013. 2013 detailed strategy for primary policy, Korea Forest Service: Seoul, 12-16 (in Korean).
  11. Korean Geotechnical Society, 2011. Cause investigation of umyeonsan landslide and recovery measure establishment service final report, Korean Geotechnical Society: Seoul, 3.
  12. Korea Meteorological Administration, Regional Climate of Seoul, http://www.kma.go.kr/weather/climate/average_regional.jsp#a1, Accessed at Aug. 22, 2017.
  13. Le, L., Q. Lin, and Y. Wang, 2017. Landslide susceptibility mapping on a global scale using the method of logistic regression, Natural Hazards and Earth System Sciences, 17(8): 1411. https://doi.org/10.5194/nhess-17-1411-2017
  14. Lee, M., I. Park, J. Won, and S. Lee, 2016. Landslide hazard mapping considering rainfall probability in inje, korea, Geomatics, Natural Hazards and Risk, 7: 424-446. https://doi.org/10.1080/19475705.2014.931307
  15. Lee, S. and J.A. Talib, 2005. Probabilistic landslide susceptibility and factor effect analysis, Environmental Geology, 47(7): 982-990. https://doi.org/10.1007/s00254-005-1228-z
  16. Lee, S. and K. Min, 2001. Statistical analysis of landslide susceptibility at yongin, korea, Environmental Geology, 40: 1095-1113. https://doi.org/10.1007/s002540100310
  17. Lee, S., J.-H. Ryu, J.-S. Won, and H.-J. Park, 2004. Determination and application of the weights for landslide susceptibility mapping using an artificial neural network, Engineering Geology, 71: 289-302. https://doi.org/10.1016/S0013-7952(03)00142-X
  18. Lee, S., S.-M. Hong, and H.-S. Jung, 2017. A support vector machine for landslide susceptibility mapping in gangwon province, korea, Sustainability, 9: 48. https://doi.org/10.3390/su9010048
  19. Lee, S., U. Chwae, and K. Min, 2002. Landslide susceptibility mapping by correlation between topography and geological structure: The janghung area, korea, Geomorphology, 46: 149-162. https://doi.org/10.1016/S0169-555X(02)00057-0
  20. Lee, S., W.J. Seong, K.Y. Oh, and M.J. Lee, 2016. The spatial prediction of landslide susceptibility applying artificial neural network and logistic regression models; A case study of Inje, Korea, Open Geosciences, 8(1): 117-132. https://doi.org/10.1515/geo-2016-0010
  21. Moore, I. D., R. Grayson, and A. Ladson, 1991. Digital terrain modelling: a review of hydrological, geomorphological, and biological applications, Hydrological Processes, 5(1): 3-30. https://doi.org/10.1002/hyp.3360050103
  22. Oh, H.J., 2010. Landslide susceptibility analysis and validation using Weight-of Evidence model, Journal of the Geological Society of Korea, 46(2): 157-170 (in Korean with English abstract).
  23. Oh, H.J., S. Lee, W. Chotikasathien, C.H. Kim, and J.H. Kwon, 2009. Predictive landslide susceptibility mapping using spatial information in the Pechabun area of Thailand, Environmental Geology, 57(3): 641. https://doi.org/10.1007/s00254-008-1342-9
  24. Ozdemir, A., 2016. Sinkhole susceptibility mapping using logistic regression in Karapinar (Konya, Turkey), Bulletin of Engineering Geology and the Environment, 75(2): 681-707. https://doi.org/10.1007/s10064-015-0778-x
  25. Pachauri, R.K., M.R. Allen, V.R. Barros, J. Broome, W. Cramer, R. Christ, J.A. Church, L. Clarke, Q. Dahe, and P. Dasgupta, 2014. Climate change 2014: Synthesis report, Contribution of working groups i, ii and iii to the fifth assessment report of the intergovernmental panel on climate change, IPCC.
  26. Park, I. and S. Lee, 2014. Spatial prediction of landslide susceptibility using a decision tree approach: A case study of the pyeongchang area, Korea, International Journal of Remote Sensing, 35: 6089-6112. https://doi.org/10.1080/01431161.2014.943326
  27. Pradhan, B. and S. Lee, 2007. Utilization of optical remote sensing data and gis tools for regional landslide hazard analysis using an artificial neural network model, Earth Science Frontiers, 14: 143-151. https://doi.org/10.1016/S1872-5791(08)60008-1
  28. Pradhan, B. and S. Lee, 2010. Landslide susceptibility assessment and factor effect analysis: Backpro - pagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling, Environmental Modelling & Software, 25: 747-759. https://doi.org/10.1016/j.envsoft.2009.10.016
  29. Seo, H., H. Ma, S.Y. Jung, and C.S. Kim, 2015. Soil Physicochemical Properties in Restored Forests following Landslide Areas in Umyeonsan Mountain, Journal of Agriculture & Life Science, 49(5): 145-156 (in Korean with English abstract). https://doi.org/10.14397/jals.2015.49.5.145
  30. Seoul Special City, 2014. Supplemental investigation report of causes of umyeonsan landslides, Seoul Special City: Seoul, 447.
  31. UNISDR, C., 2015. The human cost of natural disasters: A global perspective.
  32. Wischmeier, W.H. and D.D. Smith, 1978. Predicting rainfall erosion losses-A guide to conservation planning, USDA, Science and Education Administration, Hyattsville, Maryland, USA.
  33. Zhou, S., G. Chen, and L. Fang, 2016. Distribution pattern of landslides triggered by the 2014 ludian earthquake of china: Implications for regional threshold topography and the seismogenic fault identification, ISPRS International Journal of Geo-Information, 5: 46. https://doi.org/10.3390/ijgi5040046

피인용 문헌

  1. Landslide-susceptibility mapping in Gangwon-do, South Korea, using logistic regression and decision tree models vol.78, pp.4, 2019, https://doi.org/10.1007/s12665-019-8119-1