참고문헌
- Beven, K. and M.J. Kirkby, 1979. A physically based, variable contributing area model of basin hydrology/Un modele a base physique de zone d'appel variable de l'hydrologie du bassin versant, Hydrological Sciences Journal, 24(1): 43-69. https://doi.org/10.1080/02626667909491834
- Bohner, J. and T. Selige, 2006. Spatial prediction of soil attributes using terrain analysis and climate regionalisation, Gottinger Geographische Abhandlungen, 115: 13-28.
- Choi, J., H.-J. Oh, H.-J. Lee, C. Lee, and S. Lee, 2012. Combining landslide susceptibility maps obtained from frequency ratio, logistic regression, and artificial neural network models using aster images and gis, Engineering Geology, 124: 12-23. https://doi.org/10.1016/j.enggeo.2011.09.011
- Conrad, O., B. Bechtel, M. Bock, H. Dietrich, E. Fischer, L. Gerlitz, J. Wehberg, V. Wichmann, and J. Böhner, 2015. System for automated geoscientific analyses (saga) v. 2.1.4, Geoscientific Model Development, 8: 1991-2007. https://doi.org/10.5194/gmd-8-1991-2015
- Cruden, D. and D. Varnes, 1996. Landslide types and processes., in, landslides: Investigation and mitigation, Transportation Research Board, 247: 36-75.
- Dai, F. C. and C.F. Lee, 2002. Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong, Geomorphology, 42(3): 213-228. https://doi.org/10.1016/S0169-555X(01)00087-3
- Devkota, K.C., A.D. Regmi, H.R. Pourghasemi, K. Yoshida, B. Pradhan, I.C. Ryu, M.R. Dhital, and O.F. Althuwaynee, 2013. Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in gis and their comparison at muglingnarayanghat road section in nepal himalaya, Natural Hazards, 65: 135-165. https://doi.org/10.1007/s11069-012-0347-6
- Hjerdt, K., J. McDonnell, J. Seibert, and A. Rodhe, 2004. A new topographic index to quantify downslope controls on local drainage, Water Resources Research, 40(5).
- Ko, S.M., S.W. Lee, C.-Y. Yune, and K. Kim, 2014. Topographic Analysis of Landslides in Umyeonsan, Journal of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography, 32(1): 55-62 (in Korean with English abstract). https://doi.org/10.7848/ksgpc.2014.32.1.55
- Korea Forest Service, 2013. 2013 detailed strategy for primary policy, Korea Forest Service: Seoul, 12-16 (in Korean).
- Korean Geotechnical Society, 2011. Cause investigation of umyeonsan landslide and recovery measure establishment service final report, Korean Geotechnical Society: Seoul, 3.
- Korea Meteorological Administration, Regional Climate of Seoul, http://www.kma.go.kr/weather/climate/average_regional.jsp#a1, Accessed at Aug. 22, 2017.
- Le, L., Q. Lin, and Y. Wang, 2017. Landslide susceptibility mapping on a global scale using the method of logistic regression, Natural Hazards and Earth System Sciences, 17(8): 1411. https://doi.org/10.5194/nhess-17-1411-2017
- Lee, M., I. Park, J. Won, and S. Lee, 2016. Landslide hazard mapping considering rainfall probability in inje, korea, Geomatics, Natural Hazards and Risk, 7: 424-446. https://doi.org/10.1080/19475705.2014.931307
- Lee, S. and J.A. Talib, 2005. Probabilistic landslide susceptibility and factor effect analysis, Environmental Geology, 47(7): 982-990. https://doi.org/10.1007/s00254-005-1228-z
- Lee, S. and K. Min, 2001. Statistical analysis of landslide susceptibility at yongin, korea, Environmental Geology, 40: 1095-1113. https://doi.org/10.1007/s002540100310
- Lee, S., J.-H. Ryu, J.-S. Won, and H.-J. Park, 2004. Determination and application of the weights for landslide susceptibility mapping using an artificial neural network, Engineering Geology, 71: 289-302. https://doi.org/10.1016/S0013-7952(03)00142-X
- Lee, S., S.-M. Hong, and H.-S. Jung, 2017. A support vector machine for landslide susceptibility mapping in gangwon province, korea, Sustainability, 9: 48. https://doi.org/10.3390/su9010048
- Lee, S., U. Chwae, and K. Min, 2002. Landslide susceptibility mapping by correlation between topography and geological structure: The janghung area, korea, Geomorphology, 46: 149-162. https://doi.org/10.1016/S0169-555X(02)00057-0
- Lee, S., W.J. Seong, K.Y. Oh, and M.J. Lee, 2016. The spatial prediction of landslide susceptibility applying artificial neural network and logistic regression models; A case study of Inje, Korea, Open Geosciences, 8(1): 117-132. https://doi.org/10.1515/geo-2016-0010
- Moore, I. D., R. Grayson, and A. Ladson, 1991. Digital terrain modelling: a review of hydrological, geomorphological, and biological applications, Hydrological Processes, 5(1): 3-30. https://doi.org/10.1002/hyp.3360050103
- Oh, H.J., 2010. Landslide susceptibility analysis and validation using Weight-of Evidence model, Journal of the Geological Society of Korea, 46(2): 157-170 (in Korean with English abstract).
- Oh, H.J., S. Lee, W. Chotikasathien, C.H. Kim, and J.H. Kwon, 2009. Predictive landslide susceptibility mapping using spatial information in the Pechabun area of Thailand, Environmental Geology, 57(3): 641. https://doi.org/10.1007/s00254-008-1342-9
- Ozdemir, A., 2016. Sinkhole susceptibility mapping using logistic regression in Karapinar (Konya, Turkey), Bulletin of Engineering Geology and the Environment, 75(2): 681-707. https://doi.org/10.1007/s10064-015-0778-x
- Pachauri, R.K., M.R. Allen, V.R. Barros, J. Broome, W. Cramer, R. Christ, J.A. Church, L. Clarke, Q. Dahe, and P. Dasgupta, 2014. Climate change 2014: Synthesis report, Contribution of working groups i, ii and iii to the fifth assessment report of the intergovernmental panel on climate change, IPCC.
- Park, I. and S. Lee, 2014. Spatial prediction of landslide susceptibility using a decision tree approach: A case study of the pyeongchang area, Korea, International Journal of Remote Sensing, 35: 6089-6112. https://doi.org/10.1080/01431161.2014.943326
- Pradhan, B. and S. Lee, 2007. Utilization of optical remote sensing data and gis tools for regional landslide hazard analysis using an artificial neural network model, Earth Science Frontiers, 14: 143-151. https://doi.org/10.1016/S1872-5791(08)60008-1
- Pradhan, B. and S. Lee, 2010. Landslide susceptibility assessment and factor effect analysis: Backpro - pagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling, Environmental Modelling & Software, 25: 747-759. https://doi.org/10.1016/j.envsoft.2009.10.016
- Seo, H., H. Ma, S.Y. Jung, and C.S. Kim, 2015. Soil Physicochemical Properties in Restored Forests following Landslide Areas in Umyeonsan Mountain, Journal of Agriculture & Life Science, 49(5): 145-156 (in Korean with English abstract). https://doi.org/10.14397/jals.2015.49.5.145
- Seoul Special City, 2014. Supplemental investigation report of causes of umyeonsan landslides, Seoul Special City: Seoul, 447.
- UNISDR, C., 2015. The human cost of natural disasters: A global perspective.
- Wischmeier, W.H. and D.D. Smith, 1978. Predicting rainfall erosion losses-A guide to conservation planning, USDA, Science and Education Administration, Hyattsville, Maryland, USA.
- Zhou, S., G. Chen, and L. Fang, 2016. Distribution pattern of landslides triggered by the 2014 ludian earthquake of china: Implications for regional threshold topography and the seismogenic fault identification, ISPRS International Journal of Geo-Information, 5: 46. https://doi.org/10.3390/ijgi5040046
피인용 문헌
- Landslide-susceptibility mapping in Gangwon-do, South Korea, using logistic regression and decision tree models vol.78, pp.4, 2019, https://doi.org/10.1007/s12665-019-8119-1