DOI QR코드

DOI QR Code

Generation and Verification of Synthetic Wind Data With Seasonal Fluctuation Using Hidden Markov Model

은닉 마르코프 모델을 이용하여 계절의 변동을 동반한 인공 바람자료 생성 및 검증

  • Park, Seok-Young (Department of Aerospace Engineering, Jeonbuk National University) ;
  • Ryu, Ki-Wahn (Department of Aerospace Engineering, Jeonbuk National University)
  • Received : 2021.09.15
  • Accepted : 2021.11.22
  • Published : 2021.12.01

Abstract

The wind data measured from local meteorological masts is used to evaluate wind speed distribution and energy production in the specified site for wind farm However, wind data measured from meteorological masts often contain missing information or insufficient desired height or data length, making it difficult to perform wind turbine control and performance simulation. Therefore, long-term continuous wind data is very important to assess the annual energy production and the capacity factor for wind turbines or wind farms. In addition, if seasonal influences are distinct, such as on the Korean Peninsula, wind data with seasonal characteristics should be considered. This study presents methodologies for generating synthetic wind that take into account fluctuations in both wind speed and direction using the hidden Markov model, which is a statistical method. The wind data for statistical processing are measured at Maldo island in the Kokunnsan-gundo, Jeonbuk Province using the Automatic Weather System (AWS) of the Korea Meteorological Administration. The synthetic wind generated using the hidden Markov model will be validated by comparing statistical variables, wind energy density, seasonal mean speed, and prevailing wind direction with measurement data.

풍력발전단지 위치 선정에 있어 풍속 분포 및 발전량을 평가하기 위해 해당 지역의 기상 타워에서 계측된 바람 자료를 이용한다. 그러나 기상 타워에서 계측된 바람 자료는 종종 정보가 누락되거나 원하는 높이에 맞지 않거나, 혹은 데이터 길이가 충분하지 않아 풍력터빈 제어 및 성능 시뮬레이션 수행에 어려움을 겪게 된다. 따라서 풍력터빈 혹은 발전단지에 대한 연간 발전량 및 이용률을 평가하는데 원하는 높이에서 장기간의 연속적인 바람 자료는 매우 중요하다. 또한, 한반도와 같이 계절에 따른 풍향과 풍속 변동이 뚜렷한 경우에는 계절별 특징이 고려된 풍속과 풍향을 동반한 바람 자료를 고려해야 한다. 본 연구에서는 통계적 방법인 은닉 마르코프 모델을 이용하여 풍속과 풍향의 변동을 고려한 인공 바람을 생성하기 위한 방법을 제시한다. 통계처리를 위한 바람 자료는 전라북도 고군산군도에 있는 말도의 기상청 방재기상관측(AWS) 장비에서 계측된 자료를 사용한다. 은닉 마르코프 모델에 의해 생성된 인공 바람은 통계 변수, 풍력에너지밀도, 계절별 평균 풍속, 주 풍향 등을 계측 자료와 비교를 통해 검증하기로 한다.

Keywords

Acknowledgement

본 연구는 한국전력공사의 2021년 착수 기초연구개발 과제 연구비에 의해 진행되었음(과제번호: R21XO01-6).

References

  1. IEC61400-1 International Standard, 3rd edition, 2005.
  2. Torres, J. L., Garcia, A., Blas, D. and Francisco, D., "Forecast of hourly average wind speed with ARMA models in Navarre," Solar Energy, Vol. 79, No. 1, 2005, pp. 65~77. https://doi.org/10.1016/j.solener.2004.09.013
  3. Garcia, J. L. T., Calderon, E. C., Avalos, G. G., Heras, E. R. and Tshikala, A. M., "Forecast of daily output energy of wind turbine using sARIMA and nonlinear autoregressive models," Advances in Mechanical Engineering, Vol. 11, No. 2, 2019, pp. 1~15.
  4. Cadenas, E. and Rivera, W., "Wind speed forecasting in the South Coast of Oaxaca," Renewable Energy, Vol. 32, No. 12, 2007, pp. 2116~2128. https://doi.org/10.1016/j.renene.2006.10.005
  5. Balzter, H., "Markov chain models for vegetation dynamics," Ecological Modelling, Vol. 126, 2000, pp. 139~154. https://doi.org/10.1016/S0304-3800(00)00262-3
  6. Ryu, K. W., "Use of Markov Chains for synthetic wind data generation and its statistical verification," Journal of Wind Energy, Vol. 12, No. 3, 2021, pp. 13~18. https://doi.org/10.33519/KWEA.2021.12.3.002
  7. Rabiner, L. R., "A tutorial on hidden markov models and selected applications in speech recognition," Proceedings of the IEEE, Vol. 77, No. 2, 1989, pp. 257~286. https://doi.org/10.1109/5.18626
  8. Shamshad, A., Bawadi, M. A., Hussin, W. M. A., Majid, T. A. and Sanusi, S. A. M., "First and Second order Markov chain models for synthetic generataion of wind speed time series," Energy, Vol. 30, 2005, pp. 693~708. https://doi.org/10.1016/j.energy.2004.05.026
  9. Varga, A. P. and Moore, R. L., "Hidden Markov model decomposition of speech and noise," International Conference on Acoustics, Speech, and Signal Processing, Vol. 2, 1990, pp. 845~848.
  10. Jang, M., Lee, J. M., Hwang, Y., Cho, Y. J. and Song, J. B., "Condition monitoring of rotating machine with a change in speed using Hidden Markov Model," Transactions of the Korean Society for Noise and Vibration Engineering, Vol. 22, No. 5, 2012, pp. 413~421. https://doi.org/10.5050/KSNVE.2012.22.5.413
  11. Khiatani, D. and Ghose, U., "Weather Forecasting Using Hidden Markov Model," 2017 International Conference on Computing and Communication Technologies for Smart Nation (IC3TSN), 2017, pp. 220~225.
  12. Jafarzadeh, S., Fadali, S., Evrenosoglu, C. Y. and Livani, H., "Hour-ahead wind power prediction for power systems using Hidden Markov Models and Viterbi Algorithm," IEEE PES General Meeting, 2010, pp. 1~6.
  13. Basile, S., Burlon, R. and Gurrera, D., "Analysis and modeling of wind directions time series," 2013 International Conference on Renewable Energy Research and Applications (ICRERA), 2013, pp. 1190~1193.
  14. Kim, C. K., Jang, S. J. and Kim, T. Y., "Site selection for offshore wind farms in the southwest coast of South Korea," Renewable Energy, Vol. 120, 2018, pp. 151~162. https://doi.org/10.1016/j.renene.2017.12.081
  15. NREL Transforming ENERGY, Geospatial Data Science Wind Data, available online: https://www.nrel.gov.