• 제목/요약/키워드: Local skin mode

검색결과 16건 처리시간 0.019초

초음파를 이용한 리도카인 수용성겔의 경피흡수 및 진통효과 (Transdermal Delivery and Analgesic Effects of Lidocaine Hydrogel by Phonophoresis)

  • 양재헌;김대근;송경숙;윤미영;안효초;김영일;김태열
    • Journal of Pharmaceutical Investigation
    • /
    • 제37권3호
    • /
    • pp.149-158
    • /
    • 2007
  • To investigate the permeability of lidocaine, percutaneous absorption studies were performed using excised hairless mouse skin and the penetration of lidocaine via the skin was determined. To increase the skin permeation of lidocine, the effects of $Labrasol^{(R)}$, $Labrafil^{(R)}$, $Labrafac^{(R)}$ and $Transcutol^{(R)}$ were investigated. The skin permeation of lidocaine was increased when $Labrasol^{(R)}$ and $Transcutol^{(R)}$ were used as permeation enhancer. To evaluate the influence of ultrasound, various factors such as application modes (continuous mode and pulsed mode), frequency (1.0 and 3.0 MHz) and intensity (1.0, 1.5 and 2.0 w/$cm^2$) were investigated with lidocaine hydrogel. The pronounced effect of ultrasound on the skin permeation of lidocaine was observed at all ultrasound energy levels. The influence of frequency having an effect on skin permeation rate was higher in the case of using 1 MHz, 2.0 w/$cm^2$ and continuous treatment. As the intensity of ultrasound increased, the permeation of lidocaine was accelerated. The in vivo anesthetic effects were evaluated by two aspects as mechanical threshold and electrical threshold. Six healthy volunteers consented to the randomized, double-blind, and cross-over designed study in each group. In each subject, 3 groups were adapted such as K group (ultrasound with gel base only), L group (lidocaine gel) and B group (ultrasound with lidocaine gel). In conclusion, lidocaine was potent anesthetic which could be block pain threshold effectively. And ultrasound could accelerate the skin penetration of lidocaine. The phonophoretic delivery system could be a good candidate for lidocaine as a local anaesthetic to improve the skin permeation and in vivo anaesthetic effect.

Buckling Analysis of Grid-Stiffened Composite Plates Using Hybrid Element with Drilling D.O.F.

  • Cho, Maenghyo;Kim, Won-Bae
    • Computational Structural Engineering : An International Journal
    • /
    • 제3권1호
    • /
    • pp.19-29
    • /
    • 2003
  • In the present study, finite element linear buckling analysis is performed for grid-stiffened composite plates. A hybrid element with drilling degrees of freedom is employed to reduce the effect of the sensitivity of mesh distortion and to match the degrees of freedom between skins and stiffeners. The preliminary static stress distribution is analyzed for the determination of accurate load distribution. Parametric study of grid structures is performed and three types of buckling modes are observed. The maximum limit of buckling load was found at the local skin-buckling mode. In order to maximize buckling loads, stiffened panels need to be designed to be buckled in skin-buckling mode.

  • PDF

보강원통셸의 최소중량화설계 연구 (A Study on the Minimum Weight Design of Stiffened Cylindrical Shells)

  • 원종진
    • 대한기계학회논문집
    • /
    • 제16권4호
    • /
    • pp.630-648
    • /
    • 1992
  • 본 연구에서는 여러가지 하중조건하에서 단순지지된 보강원통셸의 최소중량화 설계문제를 CONMIN을 사용하여 해석하고, 일반적인 대칭적층[0/.+-..theta./90]$_{s}$ 의 복합 적층원통셸, 복합적층honeycomb sandwich원통셸, 그리고 보강된 복합적층원통셸의 최 소중량화 설계문제에도 확장 적용한다. 설계변수(design variable)로는 등방성재료 인 경우와 복합적층인 경우 최대 9개, 부등제한조건으로는 전체좌굴(general buckling ), 준전체좌굴(panel buckling), 판 및 보강재의 국부좌굴(local cripping), 로링모드 (rolling mode), 그리고 응력과 변형률제한 등의 성질제한조건(behavior constraints) 과 설계변수의 상, 하한을 나타내는 기하학적 제한(side constraints)등 최대 32개를 설정한다. 본 최소중량화 설계예에서는 보강재의 최적단면형상을 검토하기 위하여 직사각형(R)형, I형, 그리고 T형 단면 등의 보강재들을 사용한다.

국부진동모드가 플러터해석에 미치는 영향연구 (The effect of Local Vibration Modes on the Flutter)

  • 신영석;김헌주;김성태;김재영;황철호
    • 한국항공우주학회지
    • /
    • 제39권10호
    • /
    • pp.919-926
    • /
    • 2011
  • 고속 비행체의 날개 구조물은 스킨과 튼튼한 골격으로 구성되어 있다. 플러터 해석시 날개 구조물의 고유진동모드를 이용하여 비정상공기력을 계산하고 모달접근법을 이용하여 시간영역이나 주파수 영역에서 구조물의 진동안정성을 분석하게 되므로, 사용되는 고유 진동 모드는 신중하게 선정되어야 한다. 이를 위해 날개 구조물과 같이 고차에서 스킨의 국부진동모드가 있는 경우 이러한 모드가 비정상공기력 및 플러터 특성에 미치는 영향을 분석하였다.

항공기 패널 조립체 구조물의 스트링거 형상 최적화 (Stringer Shape Optimization of Aircraft Panel Assembly Structure)

  • 김형래;박찬우
    • 한국정밀공학회지
    • /
    • 제23권6호
    • /
    • pp.136-142
    • /
    • 2006
  • Optimization of the aircraft panel assembly constructed by skin and stringers is investigated. For the design of panel assembly of the aircraft structure, it is necessary to determine the best shape of the stringer which accomplishes lowest weight under the condition of no instability. A panel assembly can fail in a variety of instability modes under compression. Overall modes of flexure or torsion can occur and these can interact in a combined flexural/torsion mode. Flexure and torsion can occur symmetrically or anti-symmetrically. Local instabilities can also occur. The local instabilities considered in this paper are buckling of the free and attached flanges, the stiffener web and the inter-rivet buckling. A program is developed to find out critical load for each instability mode at the specific stringer shape. Based on the developed program, optimization is performed to find optimum stringer shape. The developed instability analysis program is not adequate for sensitivity analysis, therefore RSM (Response Surface Method) is utilized instead to model weight and instability constraints. Since the problem has many local minimum, Genetic algorithm is utilized to find global optimum.

피크전류모드 제어를 적용한 고주파 심부발열 전원장치 설계 (Design of High Frequency Heating Power Supply System Using Peck Current Mode Control)

  • 허국성;정도;박성욱;구위경;김희제
    • 전기학회논문지
    • /
    • 제66권1호
    • /
    • pp.61-65
    • /
    • 2017
  • In this paper a prototype of high frequency heating power supply system based on the high frequency heating principle is designed to take the place of acupuncture, moxibustion, warm dressing treatment and some other traditional physical therapy methods. Which possess the advantages of low cost, convenient, easy operation and good effect. The high frequency heating power supply can generate a pulse voltage of more than 1KV with 300KHz switching frequency to heat the patient's skin. The skin temperature can reach to $41{\sim}42^{\circ}C$. The peak current control method is used to maintain the skin temperature in the designed range. The design of the main circuit is based on the flyback converter topology. An easier and practical design method is proposed in this paper. The power supply system prototype is verified to be stable and reliable by both the simulation and experimental results.

Study and design of assembled CFDST column-beam connections considering column wall failure

  • Guo, Lei;Wang, Jingfeng;Yang, T.Y.;Wang, Wanqian;Zhan, Binggen
    • Steel and Composite Structures
    • /
    • 제39권2호
    • /
    • pp.201-213
    • /
    • 2021
  • Currently, there is a lack of research in the design approach to avoid column wall failure in the concrete filled double skin steel tubular (CFDST) column-beam connections. In this paper, a finite element model has been developed and verified by available experimental data to analyze the failure mechanism of CFDST column-beam connections. Various finite element models with different column hollow ratios (χ) were established. The simulation result revealed that with increasing χ the failure mode gradually changed from yielding of end plate, to local failure of the column wall. Detailed parametric analyses were performed to study the failure mechanism of column wall for the CFDST column-beam connection, in which the strength of sandwiched concrete and steel tube and thickness of steel tube were incorporated. An analytical model was proposed to predict the moment resistance of the assembled connection considering the failure of column wall. The simulation results indicate that the proposed analytical model can provided a conservative prediction of the moment resistance. Finally, an upper bound value of χ was recommend to avoid column wall failure for CFDST column-beam connections.

Seismic behavior of circular-in-square concrete-filled high-strength double skin steel tubular stub columns with out-of-code B/t ratios

  • Jian-Tao Wang;Yue Wei;Juan Wang;Yu-Wei Li;Qing Sun
    • Steel and Composite Structures
    • /
    • 제49권4호
    • /
    • pp.441-456
    • /
    • 2023
  • Aiming at the development trend of light weight and high strength of engineering structures, this paper experimentally investigated the seismic performance of circular-in-square high-strength concrete-filled double skin steel tubular (HCFDST) stub columns with out-of-code width-to-thickness (B/t) ratios. Typical failure mode of HCFDST stub columns appeared with the infill material crushing, steel fracture and local buckling of outer tubes as well as the inner buckling of inner tubes. Subsequently, the detailed analysis on hysteretic curves, skeleton curves and ductility, energy dissipation, stiffness degradation and lateral force reduction was conducted to reflect the influences of hollow ratios, axial compression ratios and infill types, e.g., increasing hollow ratio from 0.54 to 0.68 and 0.82 made a slight effect on bearing capacity compared to the ductility coefficients; the higher axial compression ratio (e.g., 0.3 versus 0.1) significantly reduced the average bearing capacity and ductility; the HCFDST column SCFST-6 filled with concrete obviously displayed the larger initial secant stiffness with a percentage 34.20% than the column SCFST-2 using engineered cementitious composite (ECC); increasing hollow ratios, axial compression ratios could accelerate the drop speed of stiffness degradation. The out-of-code HCFDST stub columns with reasonable design could behave favorable hysteretic performance. A theoretical model considering the tensile strength effect of ECC was thereafter established and verified to predict the moment-resisting capacity of HCFDST columns using ECC. The reported research on circular-in-square HCFDST stub columns can provide significant references to the structural application and design.

현대 패션에 나타난 가죽의 표현 기법과 특성 (Expression Techniques and Characteristics of Leather in Contemporary Fashion)

  • 김선영
    • 복식문화연구
    • /
    • 제19권1호
    • /
    • pp.71-82
    • /
    • 2011
  • This paper examined the kinds and characteristics of leather and also analyzed the expression techniques and characteristics of leather in contemporary fashion. The objective of this study lies in re-interpreting the current location of leather in contemporary fashion design, enlarging unlimited potential expression fields of leather, and at the same time, helping create new viewpoints and expression types of leather. For this purpose, this paper examined the kinds and characteristics of leather through the existing literatures, and it also carried out positive analysis of the expression techniques and characteristics of leather clothes through local and foreign fashion magazines and collection papers, such as Gap, Vogue, and Mode & Mode, focusing on the works presented in the fashion collections after 2000. Leather in contemporary fashion is expressed in different colors through dyeing. Through various expression techniques such as wrinkles, ruffle, stitch, embossing, quilting, patchwork, holing, nailing, cutting, laser cutting, fringe, weaving, printing, and collage, leather breaks the fixed ideas of itself and further, it makes the images of fashion design affluent. Leather clothes, which are made through various expression techniques, have some characteristics. First, leather clothes emphasize women's voluptuous beauty. Second, leather clothes create a decorative effect through mixture of materials and various expression techniques. Third, through the feel of materials and the emphasis of shapes, primitive beauty is expressed.

틸팅차량용 차체의 Hybrid 복합재 접합체결부의 정적 및 피로 파괴 평가 (Static and Fatigue Fracture Assessment of Hybrid Composite Joint for the Tilting Car Body)

  • 정달우;김정석;서승일;조세현;최낙삼
    • 대한기계학회논문집A
    • /
    • 제31권2호
    • /
    • pp.166-173
    • /
    • 2007
  • Fatigue fracture behavior of a hybrid bolted joint was evaluated in comparison to the case of static fracture. Two kinds of specimens were fabricated for the mechanical tests; a hybrid bolted joint specimen for the shear test and a hybrid joint part specimen applied in the real tilting car body for the bending test. Characteristic fracture behaviors of those specimens under cyclic toads were obviously different from the case under static loads. For the hybrid bolted joint specimen, static shear loading caused the fracture of the bolt body itself in a pure shear mode, whereas cyclic shear loading brought about the fracture at the site of local tensile stress concentration. For the hybrid joint part specimen, static bend loading caused the shear deformation and fracture in the honeycomb core region, while cyclic bend loading did the delamination along the interface between composite skin and honeycomb core layers as well as the fracture of welded joint part. Experimental results obtained by static and fatigue tests were reflected in modifications of design parameters of the hybrid joint structure in the real tilting car body.