• 제목/요약/키워드: Local search algorithm

검색결과 447건 처리시간 0.029초

Optimization of the Travelling Salesman Problem Using a New Hybrid Genetic Algorithm

  • Zakir Hussain Ahmed;Furat Fahad Altukhaim;Abdul Khader Jilani Saudagar;Shakir Khan
    • International Journal of Computer Science & Network Security
    • /
    • 제24권3호
    • /
    • pp.12-22
    • /
    • 2024
  • The travelling salesman problem is very famous and very difficult combinatorial optimization problem that has several applications in operations research, computer science and industrial engineering. As the problem is difficult, finding its optimal solution is computationally very difficult. Thus, several researchers have developed heuristic/metaheuristic algorithms for finding heuristic solutions to the problem instances. In this present study, a new hybrid genetic algorithm (HGA) is suggested to find heuristic solution to the problem. In our HGA we used comprehensive sequential constructive crossover, adaptive mutation, 2-opt search and a new local search algorithm along with a replacement method, then executed our HGA on some standard TSPLIB problem instances, and finally, we compared our HGA with simple genetic algorithm and an existing state-of-the-art method. The experimental studies show the effectiveness of our proposed HGA for the problem.

유전적 알고리즘과 직접탐색법의 결합에 의한 효율적인 최적화방법에 관한 연구 (A Study on the Efficient Optimization Method by Coupling Genetic Algorithm and Direct Search Method)

  • 이동곤;정성재;김수영
    • 대한조선학회논문집
    • /
    • 제31권3호
    • /
    • pp.12-18
    • /
    • 1994
  • 공학설계에 있어서 최적해를 얻기 위한 방법중의 하나로 최적화방법이 많이 사용되어 왔으나, 기존의 최적화방법에서는 설계점이 국부 최적점으로 빠져 들어갈 경우 그 영역을 벗어날 수 있는 방법이 없기 때문에, 최적화의 초기점을 달리하여 반복계산을 수행하여야 하는 불편한 점이 있었다. 유전적 알고리즘은 기존의 최적화방법에 비하여 다수의 설계점을 동시에 탐색하는 특성이 있어 국부 최적점에 빠질 가능성이 적은 반면, 계산시간이 많이 소요되고 전체 최적점 근처까지는 잘 수렴하나 정확한 최적점을 잘 찾지 못하는 한계가 있다. 본 연구에서는 유전적 알고리즘과 직접탐색법을 결합하여 이들의 단점을 보완한 즉, 전체 최적점을 보다 효율적으로 찾고 계산시간을 줄일 수 있는 방법을 제시하였다. 이 방법은 유전적 알고리즘을 이용하여 최적점이 존재하는 영역을 찾은 후에, 그 영역에서 직접탐색법을 이용하여 보다 정확한 최적점을 찾는 것으로, 예제를 통하여 제안된 방법의 유용성을 보였다.

  • PDF

새로운 메타 휴리스틱 최적화 알고리즘의 개발: Exponential Bandwidth Harmony Search with Centralized Global Search (Development of the Meta-heuristic Optimization Algorithm: Exponential Bandwidth Harmony Search with Centralized Global Search)

  • 김영남;이의훈
    • 한국산학기술학회논문지
    • /
    • 제21권2호
    • /
    • pp.8-18
    • /
    • 2020
  • 본 연구에서는 기존의 Harmony Search(HS)의 성능을 강화한 Exponential Bandwidth Harmony Search with Centralized Global Search(EBHS-CGS)를 개발하였다. EBHS-CGS는 HS의 성능 강화를 위해 총 두 가지 방법을 추가하였다. 첫 번째 방법은 지역탐색을 강화하기 위한 Bandwidth(bw) 개량방안이다. 이 방법은 기존 bw를 지수형태의 bw로 대체하여 적용함으로써 반복시산이 진행되면서 bw값을 줄인다. 이러한 형태의 bw는 정밀한 지역탐색을 가능하고, 이를 통해 알고리즘은 더욱 정밀한 값을 구할 수 있다. 두 번째 방법은 효과적인 전역탐색을 위한 탐색범위 축소이다. 이 방법은 Harmony Memory(HM) 내에서 가장 좋은 결정변수를 고려하여 탐색범위를 축소한다. 이를 Centralized Global Search(CGS)라 하며, 이 과정은 새로운 매개변수 Centralized Global Search Rate(CGSR)에 의해 HS의 전역탐색과는 별도로 진행된다. 축소된 탐색범위는 효과적인 전역탐색을 가능하게 하며, 이를 통해 알고리즘의 성능이 향상된다. EBHS-CGS를 대표적인 최적화 문제(수학 및 공학 분야)에 적용하고, 그 결과를 HS와 Improved Harmony Search(IHS)와 비교하여 제시하였다.

NonConvex 비용함수를 가진 전력경제급전 문제에 적응진화 알고리즘의 적용 (Application of Adaptive Evolutionary Algorithm to Economic Load Dispatch with Nonconvex Cost Functions)

  • 문경준;황기현;박준호
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제50권11호
    • /
    • pp.520-527
    • /
    • 2001
  • This paper suggests a new methodology of evolutionary computations - an Adaptive Evolutionary Algorithm (AEA) for solving the Economic Load Dispatch (ELD) problem which has piecewise quadratic cost functions and prohibited operating zones with many local minima. AEA uses a genetic algorithm (GA) and an evolution strategy (ES) in an adaptive manner in order to take merits of two different evolutionary computations: global search capability of GA and local search capability of ES. In the reproduction procedure, proportions of the population by GA and the population by ES are adaptively modulated according to the fitness. Case studies illustrate the superiority of the proposed methods to existing conventional methods in power generation cost and computation time. The results demonstrate that the AEA can be applied successfully in the solution of ELD with piecewise quadratic cost functions and prohibited operating zones

  • PDF

부품 공급업자와 조립업자간의 공동 일정계획을 위한 모집단 관리 유전 해법 (An Population Management Genetic algorithm on coordinated scheduling problem between suppliers and manufacture)

  • 양병학
    • 대한안전경영과학회지
    • /
    • 제11권3호
    • /
    • pp.131-138
    • /
    • 2009
  • This paper considers a coordinated scheduling problem between multi-suppliers and an manufacture. When the supplier has insufficient inventory to meet the manufacture's order, the supplier may use the expedited production and the expedited transportation. In this case, we consider a scheduling problem to minimize the total cost of suppliers and manufacture. We suggest an population management genetic algorithm with local search and crossover (GALPC). By the computational experiments comparing with general genetic algorithm, the objective value of GALPC is reduced by 8% and the calculation time of GALPC is reduced by 70%.

A 3-D Genetic Algorithm for Finding the Number of Vehicles in VRPTW

  • Paik, Si-Hyun;Ko, Young-Min;Kim, Nae-Heon
    • 산업경영시스템학회지
    • /
    • 제22권53호
    • /
    • pp.37-44
    • /
    • 1999
  • The problem to be studied here is the minimization of the total travel distance and the number of vehicles used for delivering goods to customers. Vehicle routes must also satisfy a variety of constraints such as fixed vehicle capacity, allowed operating time. Genetic algorithm to solve the VRPTW with heterogeneous fleet is presented. The chromosome of the proposed GA in this study has the 3-dimension. We propose GA that has the cubic-chromosome for VRPTW with heterogeneous fleet. The newly suggested ‘Cubic-GA (or 3-D GA)’ in this paper means the 2-D GA with GLS(Genetic Local Search) algorithms and is quite flexible. To evaluate the performance of the algorithm, we apply it to the Solomon's VRPTW instances. It produces a set of good routes and the reasonable number of vehicles.

  • PDF

Improvement of dynamic encoding algorithm for searches (DEAS) using hopping unidirectional search (HUDS)

  • Choi, Seong-Chul;Kim, Nam-Gun;Kim, Jong-Wook;Kim, Sang-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.324-329
    • /
    • 2005
  • Dynamic Encoding Algorithm for Searches (DEAS) which is known as a fast and reliable non-gradient optimization method, was proposed [1]. DEAS reaches local or global optimum with binary strings (or binary matrices for multi-dimensional problem) by iterating the two operations; bisectional search (BSS) and unidirectional search (UDS). BSS increases binary strings by one digit (i.e., 0 or 1), while UDS performs increment or decrement of binary strings in the BSS' result direction with no change of string length. Because the interval of UDS exponentially decreases with increment of bit string length (BSL), DEAS is difficult to escape from local optimum when DEAS falls into local optimum. Therefore, this paper proposes hopping UDS (HUDS) which performs UDS by hopping as many as BSL in the final point of UDS process. HUDS helps to escape from local optimum and enhances a probability searching global optimization. The excellent performance of HUDS will be validated through the well-known benchmark functions.

  • PDF

다 해상도 프레임 구조에 기반한 고속 움직임 추정 기법 (A Fast Motion Estimation Algorithm Based on Multi-Resolution Frame Structure)

  • 송병철;나종범
    • 대한전자공학회논문지SP
    • /
    • 제37권5호
    • /
    • pp.54-63
    • /
    • 2000
  • 고속 움직임 추정을 위한 다 해상도 블록 정합 기법을 제안한다 최저 해상도 계층에서 전역 탐색을 통해 최소 정함 오치를 갖는 움직임 벡터를 선택하고, 공간적으로 인접한 블록들의 움직임 벡터들 중에서 최소 정합 오차를 갖는 움직임 벡터를 찾는다 이 때, 주변 움직임 벡터들의 보다 정확한 탐색을 위해 저 해상도 계층에서도 움직임 벡터의 양자화 없이 탐색을 할 수 있는 효과적인 방법을 제안한다. 이렇게 얻어진 2개의 움직임 벡터들은 중간 해상도 계층에서의 탐색을 위한 초기 탐색 중심점들로 사용된다 중간 계층에서, 각 초기점을 중심으로 훨씬 좁아진 영역에서의 지역 탐색을 수행한다. 최저 해상도 계층에서 주변 움직임 벡터 탐색을 위해 사용했던 방법을 이용하면, 각 지역 탐색을 정수 화소 단위로 수행할 수 있다 지역 탐색 영역 내에서 최소 정함 오차를 갖는 움직임 벡터를 찾고, 이 벡터를 중심으로 마지막 계층에서의 마지막 탐색을 수행한다 그러나, 중간 해상도 계층에서 이미 정수 화소 단위의 정확한 움직임 벡터 추정을 수행했기 때문에, 마지막 최고 해상도 계층에서의 지역 탐색은 전체 성능에 미미한 영향을 주게 된다. 따라서 최고 해상도 계층에서의 탐색을 생략하더라도 성능 저하 없이 탐색 속도를 향상시킬 수 있다 모의 실험을 통해 최고 계층에서의 지역 탐색을 생략하더라도 제안한 블록 정합 기법이 전역 탐색 기법에 비해 보편적인 MPEG2 부호화 환경 하에서 최대 02dB의 PSNR 저하만을 보이며, 200배 이상의 계산 속도를 가점을 보인다 또한, 제안한 기법은 규칙적인 데이터 흐름을 가지am로 하드웨어 구현에도 적합하다.

  • PDF

FMS환경에서 다단계 일정계획문제를 위한 적응형혼합유전 알고리즘 접근법 (Adaptive Hybrid Genetic Algorithm Approach to Multistage-based Scheduling Problem in FMS Environment)

  • 윤영수;김관우
    • 지능정보연구
    • /
    • 제13권3호
    • /
    • pp.63-82
    • /
    • 2007
  • 본 논문에서는 유연제조시스템(FMS)에서 다단계스케줄링 문제를 효율적으로 해결하기 위한 적응형 혼합유전 알고리즘(ahGA) 접근법을 제안한다. 제안된 ahGA는 FMS의 해를 개선시키기 위하여 이웃탐색기법을 사용하며, 유전탐색과정에서의 수행도를 향상시키기 위해 유전알고리즘(GA)의 파라메터들을 조정하기 위한 적응형 구조를 사용한다. 수치실험에서는 제안된 ahGA와 기존의 알고리즘들 간의 수행도를 비교하기 위하여 두가지형태의 다단계스케줄링문제를 제시한다. 실험결과는 제안된 ahGA가 기존의 알고리즘들 보나 더 뛰어난 수행도를 보여주고 있다.

  • PDF

A Looping Population Learning Algorithm for the Makespan/Resource Trade-offs Project Scheduling

  • Fang, Ying-Chieh;Chyu, Chiuh-Cheng
    • Industrial Engineering and Management Systems
    • /
    • 제8권3호
    • /
    • pp.171-180
    • /
    • 2009
  • Population learning algorithm (PLA) is a population-based method that was inspired by the similarities to the phenomenon of social education process in which a diminishing number of individuals enter an increasing number of learning stages. The study aims to develop a framework that repeatedly applying the PLA to solve the discrete resource constrained project scheduling problem with two objectives: minimizing project makespan and renewable resource availability, which are two most common concerns of management when a project is being executed. The PLA looping framework will provide a number of near Pareto optimal schedules for the management to make a choice. Different improvement schemes and learning procedures are applied at different stages of the process. The process gradually becomes more and more sophisticated and time consuming as there are less and less individuals to be taught. An experiment with ProGen generated instances was conducted, and the results demonstrated that the looping framework using PLA outperforms those using genetic local search, particle swarm optimization with local search, scatter search, as well as biased sampling multi-pass algorithm, in terms of several performance measures of proximity. However, the diversity using spread metric does not reveal any significant difference between these five looping algorithms.