International Journal of Computer Science & Network Security
/
제24권3호
/
pp.12-22
/
2024
The travelling salesman problem is very famous and very difficult combinatorial optimization problem that has several applications in operations research, computer science and industrial engineering. As the problem is difficult, finding its optimal solution is computationally very difficult. Thus, several researchers have developed heuristic/metaheuristic algorithms for finding heuristic solutions to the problem instances. In this present study, a new hybrid genetic algorithm (HGA) is suggested to find heuristic solution to the problem. In our HGA we used comprehensive sequential constructive crossover, adaptive mutation, 2-opt search and a new local search algorithm along with a replacement method, then executed our HGA on some standard TSPLIB problem instances, and finally, we compared our HGA with simple genetic algorithm and an existing state-of-the-art method. The experimental studies show the effectiveness of our proposed HGA for the problem.
공학설계에 있어서 최적해를 얻기 위한 방법중의 하나로 최적화방법이 많이 사용되어 왔으나, 기존의 최적화방법에서는 설계점이 국부 최적점으로 빠져 들어갈 경우 그 영역을 벗어날 수 있는 방법이 없기 때문에, 최적화의 초기점을 달리하여 반복계산을 수행하여야 하는 불편한 점이 있었다. 유전적 알고리즘은 기존의 최적화방법에 비하여 다수의 설계점을 동시에 탐색하는 특성이 있어 국부 최적점에 빠질 가능성이 적은 반면, 계산시간이 많이 소요되고 전체 최적점 근처까지는 잘 수렴하나 정확한 최적점을 잘 찾지 못하는 한계가 있다. 본 연구에서는 유전적 알고리즘과 직접탐색법을 결합하여 이들의 단점을 보완한 즉, 전체 최적점을 보다 효율적으로 찾고 계산시간을 줄일 수 있는 방법을 제시하였다. 이 방법은 유전적 알고리즘을 이용하여 최적점이 존재하는 영역을 찾은 후에, 그 영역에서 직접탐색법을 이용하여 보다 정확한 최적점을 찾는 것으로, 예제를 통하여 제안된 방법의 유용성을 보였다.
본 연구에서는 기존의 Harmony Search(HS)의 성능을 강화한 Exponential Bandwidth Harmony Search with Centralized Global Search(EBHS-CGS)를 개발하였다. EBHS-CGS는 HS의 성능 강화를 위해 총 두 가지 방법을 추가하였다. 첫 번째 방법은 지역탐색을 강화하기 위한 Bandwidth(bw) 개량방안이다. 이 방법은 기존 bw를 지수형태의 bw로 대체하여 적용함으로써 반복시산이 진행되면서 bw값을 줄인다. 이러한 형태의 bw는 정밀한 지역탐색을 가능하고, 이를 통해 알고리즘은 더욱 정밀한 값을 구할 수 있다. 두 번째 방법은 효과적인 전역탐색을 위한 탐색범위 축소이다. 이 방법은 Harmony Memory(HM) 내에서 가장 좋은 결정변수를 고려하여 탐색범위를 축소한다. 이를 Centralized Global Search(CGS)라 하며, 이 과정은 새로운 매개변수 Centralized Global Search Rate(CGSR)에 의해 HS의 전역탐색과는 별도로 진행된다. 축소된 탐색범위는 효과적인 전역탐색을 가능하게 하며, 이를 통해 알고리즘의 성능이 향상된다. EBHS-CGS를 대표적인 최적화 문제(수학 및 공학 분야)에 적용하고, 그 결과를 HS와 Improved Harmony Search(IHS)와 비교하여 제시하였다.
This paper suggests a new methodology of evolutionary computations - an Adaptive Evolutionary Algorithm (AEA) for solving the Economic Load Dispatch (ELD) problem which has piecewise quadratic cost functions and prohibited operating zones with many local minima. AEA uses a genetic algorithm (GA) and an evolution strategy (ES) in an adaptive manner in order to take merits of two different evolutionary computations: global search capability of GA and local search capability of ES. In the reproduction procedure, proportions of the population by GA and the population by ES are adaptively modulated according to the fitness. Case studies illustrate the superiority of the proposed methods to existing conventional methods in power generation cost and computation time. The results demonstrate that the AEA can be applied successfully in the solution of ELD with piecewise quadratic cost functions and prohibited operating zones
This paper considers a coordinated scheduling problem between multi-suppliers and an manufacture. When the supplier has insufficient inventory to meet the manufacture's order, the supplier may use the expedited production and the expedited transportation. In this case, we consider a scheduling problem to minimize the total cost of suppliers and manufacture. We suggest an population management genetic algorithm with local search and crossover (GALPC). By the computational experiments comparing with general genetic algorithm, the objective value of GALPC is reduced by 8% and the calculation time of GALPC is reduced by 70%.
The problem to be studied here is the minimization of the total travel distance and the number of vehicles used for delivering goods to customers. Vehicle routes must also satisfy a variety of constraints such as fixed vehicle capacity, allowed operating time. Genetic algorithm to solve the VRPTW with heterogeneous fleet is presented. The chromosome of the proposed GA in this study has the 3-dimension. We propose GA that has the cubic-chromosome for VRPTW with heterogeneous fleet. The newly suggested ‘Cubic-GA (or 3-D GA)’ in this paper means the 2-D GA with GLS(Genetic Local Search) algorithms and is quite flexible. To evaluate the performance of the algorithm, we apply it to the Solomon's VRPTW instances. It produces a set of good routes and the reasonable number of vehicles.
Dynamic Encoding Algorithm for Searches (DEAS) which is known as a fast and reliable non-gradient optimization method, was proposed [1]. DEAS reaches local or global optimum with binary strings (or binary matrices for multi-dimensional problem) by iterating the two operations; bisectional search (BSS) and unidirectional search (UDS). BSS increases binary strings by one digit (i.e., 0 or 1), while UDS performs increment or decrement of binary strings in the BSS' result direction with no change of string length. Because the interval of UDS exponentially decreases with increment of bit string length (BSL), DEAS is difficult to escape from local optimum when DEAS falls into local optimum. Therefore, this paper proposes hopping UDS (HUDS) which performs UDS by hopping as many as BSL in the final point of UDS process. HUDS helps to escape from local optimum and enhances a probability searching global optimization. The excellent performance of HUDS will be validated through the well-known benchmark functions.
고속 움직임 추정을 위한 다 해상도 블록 정합 기법을 제안한다 최저 해상도 계층에서 전역 탐색을 통해 최소 정함 오치를 갖는 움직임 벡터를 선택하고, 공간적으로 인접한 블록들의 움직임 벡터들 중에서 최소 정합 오차를 갖는 움직임 벡터를 찾는다 이 때, 주변 움직임 벡터들의 보다 정확한 탐색을 위해 저 해상도 계층에서도 움직임 벡터의 양자화 없이 탐색을 할 수 있는 효과적인 방법을 제안한다. 이렇게 얻어진 2개의 움직임 벡터들은 중간 해상도 계층에서의 탐색을 위한 초기 탐색 중심점들로 사용된다 중간 계층에서, 각 초기점을 중심으로 훨씬 좁아진 영역에서의 지역 탐색을 수행한다. 최저 해상도 계층에서 주변 움직임 벡터 탐색을 위해 사용했던 방법을 이용하면, 각 지역 탐색을 정수 화소 단위로 수행할 수 있다 지역 탐색 영역 내에서 최소 정함 오차를 갖는 움직임 벡터를 찾고, 이 벡터를 중심으로 마지막 계층에서의 마지막 탐색을 수행한다 그러나, 중간 해상도 계층에서 이미 정수 화소 단위의 정확한 움직임 벡터 추정을 수행했기 때문에, 마지막 최고 해상도 계층에서의 지역 탐색은 전체 성능에 미미한 영향을 주게 된다. 따라서 최고 해상도 계층에서의 탐색을 생략하더라도 성능 저하 없이 탐색 속도를 향상시킬 수 있다 모의 실험을 통해 최고 계층에서의 지역 탐색을 생략하더라도 제안한 블록 정합 기법이 전역 탐색 기법에 비해 보편적인 MPEG2 부호화 환경 하에서 최대 02dB의 PSNR 저하만을 보이며, 200배 이상의 계산 속도를 가점을 보인다 또한, 제안한 기법은 규칙적인 데이터 흐름을 가지am로 하드웨어 구현에도 적합하다.
본 논문에서는 유연제조시스템(FMS)에서 다단계스케줄링 문제를 효율적으로 해결하기 위한 적응형 혼합유전 알고리즘(ahGA) 접근법을 제안한다. 제안된 ahGA는 FMS의 해를 개선시키기 위하여 이웃탐색기법을 사용하며, 유전탐색과정에서의 수행도를 향상시키기 위해 유전알고리즘(GA)의 파라메터들을 조정하기 위한 적응형 구조를 사용한다. 수치실험에서는 제안된 ahGA와 기존의 알고리즘들 간의 수행도를 비교하기 위하여 두가지형태의 다단계스케줄링문제를 제시한다. 실험결과는 제안된 ahGA가 기존의 알고리즘들 보나 더 뛰어난 수행도를 보여주고 있다.
Population learning algorithm (PLA) is a population-based method that was inspired by the similarities to the phenomenon of social education process in which a diminishing number of individuals enter an increasing number of learning stages. The study aims to develop a framework that repeatedly applying the PLA to solve the discrete resource constrained project scheduling problem with two objectives: minimizing project makespan and renewable resource availability, which are two most common concerns of management when a project is being executed. The PLA looping framework will provide a number of near Pareto optimal schedules for the management to make a choice. Different improvement schemes and learning procedures are applied at different stages of the process. The process gradually becomes more and more sophisticated and time consuming as there are less and less individuals to be taught. An experiment with ProGen generated instances was conducted, and the results demonstrated that the looping framework using PLA outperforms those using genetic local search, particle swarm optimization with local search, scatter search, as well as biased sampling multi-pass algorithm, in terms of several performance measures of proximity. However, the diversity using spread metric does not reveal any significant difference between these five looping algorithms.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.