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Abstract

The problem to be studied here is the minimization of the total travel distance and the number of vehicles used
for delivering goods to customers. Vehicle routes must also satisfy a variety of constraints such as fixed vehicle
capacity, allowed operating time. Genetic algorithm to solve the VRPTW with heterogeneous fleet is presented.

The chromosome of the proposed GA in this study has the 3-dimension. We propose GA that has the
cubic-chromosome for VRPTW with heterogeneous fleet. The newly suggested 'Cubic-GA (or 3-D GA)' in this paper
means the 2-D GA with GLS(Genetic Local Search) algorithms and is quite flexible. To evaluate the performance
of the algorithm, we apply it to the Solomon's VRPTW instances. It produces a set of good routes and the reasonable
number of vehicles.

Keyword : VRP(Vehicle Routing Problem), VRPTW(Vehicle Routing Problem with Time Windows),
VRPTWHtF(Vehicle Routing Problem with Time Windows and Heterogeneous Fleet), GA (Genetic
Algorithm), GLS(Genetic Local Search)

1. Introduction

Vehicle routing problems comprise an interesting and important class of combinatorial problems. Their
economic importance is marked by their presence in many areas of the manufacturing and logistics. The
problem to be studied here is the minimization of the distance and the vehicles used for delivering a set
of goods into each customer with vehicles. That is called VRP. The classical VRP involves a set of
delivery cities to be serviced by a set of vehicles at a distribution center. There are many variations of
the problem. The basic components of the problem are a fleet of vehicles with fixed capabilities (time,
capacity, distance, etc.). The objective of the VRP is to develop a set of routes such that all delivery
cities are serviced, the demands of the points assigned to each route do not violate the capacity of the
vehicle which services the route, and the total distance by all vehicles is minimized.

VRPTW is more complex as it involves servicing customers with time windows using vehicles.
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So each vehicle must visit a city at interval time[earliest time, latest time]. The constraints of the
problem require the vehicles to service the customers while not overloading the vehicles, and to
visit the customers after the earliest service time and before the latest service time. A vehicle has
to wait, if one arrives at a customer location before the earliest service time and has to wait until
the customer is ready for service. On the contrary a vehicle that arrives at a customer after the
latest service time is considered to be tardy. The objective of the VRPTW is to obtain feasible
routes while minimizing the number of vehicles and the distance traveled by the vehicles. In this
paper GA(Genetic Algorithm) to solve the VRPTW(Vehicle Routing Problems with Time Window)
with heterogeneous fleet is presented.

Recently, GAs have been widely reckoned as a useful vehicle for obtaining high quality or even
optimal solutions for a broad range of combinatorial optimization problems. Unlike classical GA, the
chromosome of the proposed GA has the new structure that is 3-dimensional. The suggested
'Cubic-GA' in this paper means the 2-D GA including GLS algorithms[5, 16].

A few researchers have studied VRPTW using GA. But they assumed homogeneous fleet. There
is no work for VRPTWH{F using GA. We proposed GA which has the cubic-chromosome for
VRPTW with heterogeneous vehicles.

The paper is organized as follows. Section 2 describes the several works in VRP and GA. In
section 3, the cubic-GA used to solve the VRPTW with heterogeneous fleet is presented. Results
for experiment are presented in Section 4. Section 5 concludes this paper and outlines areas for
future research.

2. Previous Works

It is called the routing problem in logistic system 'Hub-and-Spoke system'[1]. Routing problems
can be partitioned into several problems, ie. VRP, QAP(Quadratic Assignment Problem),
TSP(Traveling Salesman Problem), etc. We have focused on VRP in this paper. Since the VRPTW
is NP-hard, most of researches have focused on heuristic approaches or case studies. Though
optimal solutions to VRPTW can be obtained using exact methods, the computational time required
to solve a VRPTW to optimality is huge. There are many literatures on vehicle routing problem
with time window constraints. The classification of the exact approaches for VRPTW suggested by

Fisher, Jrnsten and Madsen[4] is given below.
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<Figure 1> Schematic diagram of GA
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(@D Approaches based on dynamic programming.
@ Approaches based on column generation

@ Lagrangian decomposition based methods

@ K-tree based methods

GAs have been deeply investigated in the last decade as a possible method for solving function
optimization and combinatorial problems. The idea of GA was to evolve a population of candidate
solutions to a given problem, using genetic operators, crossover and mutation, inspired by natural
genetic variation and natural selection at each generation. A schematic diagram of the basic
structure of a genetic algorithm is shown in figure 1.

Many researchers in GAs have worked how to represent a special problem, to decide the value
of parameters (the crossover rate, the mutation rate, and population size), to redesign the genetic
operators for the purpose of a special problem, and to develop new fit genetic operators.

In a view of representation, Prinetto, Rebaudengo and Reorda[19] have summarized how to
represent a tour in GAs. They distinguished the methods in three ways below.

Path Representation; Ordinal Representation Adjacency Representation

Thangiah[20] studied the representation of the attributes (the origin and the radius of the circle)
of a circle in a chromosome for clustering. The chromosome of GA was encoded with
two-dimension in several works[10, 12, 16, 23].

In a view of crossover operators, there are OX(Order Crossover)[2], CX(Cycle Crossover)[18],
HC(Heuristic Cross over)[19], MX(Matrix Crossover)[9], ER(Edge Recombina-tion operator)[8, 20,
22], CSEX(Complete Subtour Exchange Cross over)[11], SXX(Subsequence eXchange Crossover)[23],
MPX (Maximal Preservative Crossover)[15], PMX(Partially Matched Crossover){6,7], DPX(Distance
Preserving Crossover) [14],THX(Time Horizon exchange crossover)[12].

Since the chromosome adapted in this paper has cubical structure, and includes more information.

3. Cubic-Genetic Algorithm

We mapped the X-axis to the capacity of vehicle, the Y-axis to the number of vehicles and the
Z-axis to time window for VRPTW. The Cubic-GA in this paper means the 2-dimensional(2-D) GA
with GLS algorithm[5, 16]. The logic of Cubic-GA is similar to usual GA except containing more
information. The Cubic-GA defined with the 2-D GA and GLS(Genetic Local Search)[5, 16] is
given below.

1)Population

Population, with size n, is randomly generated
2) Selection
Two chromosomes are randomly selected using elitism for crossover.

3) Crossover (Considering X-Y axis (figure 2))

Revised PMX(Partially Matched Crossover) operator. is used for generating offspring(figure 2).
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(a) Parent 1 (c) Offspring with redundant gene (e) Exchanging the order of vehicles

(b) Parent 2 (d) Offspring with replacement (f) Offspring considering capacity

<Figure 2> Revised PMX operator

Select one chromosome from 2 parent chromo- somes(Fig. 2 (a), (b)).
- We assume that the parent 2 is selected between parent 1 and parent 2.
Select a row(building block) randomly among of the rows of the parent 2.
- The mark of circle in figure 2(b) is the selected row.
Overlap the selected row to the same row of the other parent(figure 2(c)).
Perform PMX
- The alleles, 'C','D’,'N', in figure 2(c) are redundant value.
- Replace 'C' of the row 4 with 'J' which is the original value of the parent 1 before
overlapping.
- Replace 'D' of the row 4 with 'K' which is the original value of the parent 1 before
overlapping.
- Replace 'N' of the row 2 with 'L' which is the original value of the parent 1 before
overlapping.
- If there is no correspondent gene, delete that gene.
If weight exceeds the capacity of the vehicle, the last load(=gene) moves to the next
vehicle(fig 2(e))
4) Local Search (Considering Y-Z axis (figure 3))

We rotate original chromosome into Y-Z axis. Every gene has the own time window. We
should rearrange the order of gene in order to make a feasible route. To achieve local
optimality, hill-climber algorithm is used. If the infeasible route happen, the gene move into
next vehicle. If the feasible route happen, NNH(nearest neighbor heuristic) is used.

For preventing the infeasible solution, we add the penalty terms to the fitness function. That
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<Figure 3> Chromosome Direction

is, the fitness of the chromosome has the terms with the sum of fitness of every vehicle, and
penalties corresponding to the violating constraints. And there is no mutation in this paper.
5) Fitness

Fx) = XievFi+ V*M

Fi = fi + {max([0, gj(fia+di.1)] + e * max(0, (f.itdiiy)-bil}

fi = diaj + {max[0, g - (f.1 + doy)] + max[0, (f.+diay) - b} , JEN;

\Y ; The set of vehicles.  dj.; ; The time from (j-1)-th to j-th node.

N ; The earliest time for service of the j-th node.

b; ; The latest time for service of the j-th node.

Ni ; The set of nodes in vehicle i. f ; Spending time from 0 to j-th node.
F; ; The fitness of vehicle i. M, a ; Penalty.

The first term in F; indicates moving time from depot to (j-1)th node. The second term means
waiting time and the third term is lateness. The last term is added in order to reduce the number

of vehicles. Penalty M and « are the arbitrary big constant.

4. Computation Experiments

The algorithm was coded in Visual C++ and the experiments were conducted on a Pentium II
266MHz. Problem difficulty increases with the time increment of the number of windows, because
the rate of overlapping time windows increases. As noted by Dumas et al.[3], the running time of
their exact algorithm increases exponentially with time window width for a given problem size. We
simulated with the Solomon's data. In Solomon's instances[25], he changed the unit of distance into
unit of time, since distance can be converted into time. Travel times between customers are
truncated to one decimal place. Unfortunately, there are no published instances for VRPTWHLF.
And we modified Solomon's problem(r101) and simulate it with various parameter values. Each
node has time window [a, b]. Duration t; is associated with each arc(i, j). The VRPTW problems

generated by Solomon[25] incorporate many distinguishing features of vehicle routing with two-sided
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<Figure 5> Program Demo

time windows. The problems vary in fleet size, vehicle capacity, travel time of vehicles, spatial and
temporal distribution of customers, time window density(the number of demands with time window),
time window width, percentage of time constrained customers and customer service times. In this
example, time window is divided into morning and afternoon. For simulating GA, we let population
size 50, iteration size 2000, pm zero and penalty M and a 50. Generally, the more iteration we
have, the better route is generated and the more population size we have, the better route is
generated too. The result is given table 1 and figure 4(b). Figure 4(a) depict the improvement
process of population's fitness and figure 5 is the demo of source program.

Each routes(rows) is generated from each vehicle. From table 1 and the figure 3, generally good
routes is obtained at Pc = 0.8~0.9. Although the best route is generated at Pc = 0.85 in case 3, we

should decide an alternative plan by considering the cost and time simultaneously.
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5. Conclusion

This paper has described an application of genetic algorithm for vehicle routing problems. We
found the reasonable set of routes for the testing problem. But the proposed approach is not
competitive to the best heuristic technique for the VRPTWHtF. But, there are no VRPTW problems
considering heterogeneous fleet using GA.

Cubic-GA algorithm has a weakness. When the time windows' width is narrow, the performance
of the algorithm is inferior to the published best solution. Such a case we can guess that the
component of local search may not be elaborate. But Cubic-GA is a quite flexible algorithm and
we are able to find good routes whatever types of vehicles.

There are several issues for future research. First, we need a heuristic algorithm considering tight
time windows. Second, alternatives of some components of this algorithm may be investigated(e.g.

various crossover operators, and other local searches).
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