• Title/Summary/Keyword: Local extrusion

Search Result 25, Processing Time 0.018 seconds

Expansion behavior of low-strength steel slag mortar during high-temperature catalysis

  • Kuo, Wen-Ten;Shu, Chun-Ya
    • Computers and Concrete
    • /
    • v.16 no.2
    • /
    • pp.261-274
    • /
    • 2015
  • This study established the standard recommended values and expansion fracture threshold values for the content of steel slag in controlled low-strength materials (CLSM) to ensure the appropriate use of steel slag aggregates and the prevention of abnormal expansion. The steel slags used in this study included basic oxygen furnace (BOF) slag and desulfurization slag (DS), which replaced 5-50% of natural river sand by weight in cement mixtures. The steel slag mortars were tested by high-temperature ($100^{\circ}C$) curing for 96 h and autoclave expansion. The results showed that the effects of the steel slag content varied based on the free lime (f-CaO) content. No more than 30% of the natural river sand should be replaced with steel slag to avoid fracture failure. The expansion fracture threshold value was 0.10%, above which there was a risk of potential failure. Based on the scanning electron microscopy (SEM) analysis, the high-temperature catalysis resulted in the immediate extrusion of peripheral hydration products from the calcium hydroxide crystals, leading to a local stress concentration and, eventually, deformation and cracking.

Roles of $Na^+\;-Ca^{2+}$ Exchange in the Negative Force-Frequency Relationship

  • Ko, Chang-Mann;Kim, Soon-Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.6
    • /
    • pp.715-724
    • /
    • 1998
  • Frequency-force relationships (FFR) were studied in electrically field stimulated rat left atria (LA) by reducing the stimulation frequency from resting 3 Hz to test frequencies (0.1-1 Hz) for 5 minutes. The twitch amplitudes of LA elicited the typical negative staircases with 3-phased changes: the initial rapid increase, the second decrease and the following plateau at test frequencies. Verapamil $(3{\times}10^{-5}\;M)$ pretreatment elicited frequency-dependent suppression of the twitch amplitudes, exaggerating the negative staircase. Monensin pretreatment enhanced not the peak but the plateau amplitudes in a concentration-dependent manner. When the $Na^+-Ca^{2+}$ exchange was blocked by $Na^+\;and\;Ca^{2+}$ depletion in the Krebs Hensleit buffer (0 $Na^+-0\;Ca^{2+}$ KHB), the twitch amplitudes increased in a frequency-dependent manner, changing the negtive staircase into the positve one. Meanwhile, the 0 $Na^+-0\;Ca^{2+}$ KHB applicationinduced enhancement was strongly suppressed by caffeine (5 mM) pretreatment. Only dibucaine among the local anesthetics increased the basal tone during frequency reduciton. There were no differences in $^{45}Ca$ uptakes between 0.3 Hz and 3 Hz stimulation except at 1 min when it was significantly low at 0.3 Hz than 3 Hz, illustrating net $Ca^{2+}$ losses. Monensin pretreatment enhanced the rate of this $Ca^{2+}$ loss. Taken together, it is concluded that $Na^+-Ca^{2+}$ exchange extrudes more SR released $Ca^{2+}$ out of the cell in proportion to the frequency, resulting in the negative rate staircase in the rat LA.

  • PDF

CASE REPORT OF PREMATURE CONTACT BY UNPROPER REDUCTION OF AVULSED TOOTH (탈구된 치아의 부적절한 재식으로 인한 조기접촉의 치험례)

  • Ra, Ji-Young;Kim, Dae-Eop;Yang, Yong-Sook;Lee, Kwang-Hee
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.32 no.1
    • /
    • pp.1-6
    • /
    • 2005
  • Injury of permanent teeth by trauma usually occurs to $8{\sim}10\;years$ old children, in mixed dentition. Fracture, dislocation, intrusion, extrusion, avulsion are the common types of trauma in teeth. The injuries which teeth are dislocated from the alveolar sockets can be treated by reduction and fixation. In this case report two children visited Wonkwang University Dental Hospital after the emergency treatment of tooth injury by other medical institutes. In these cases the injured teeth were not reducted properly and showed premature contact. So the teeth were dislocated from the alveolar sockets intentionally and fixed again in the proper position. Unproper reduction can cause premature contact, delay of healing, difficulty of mastication, and malocclusion. For this reason emergency rooms or local dental clinics where patients with dental trauma can be examined first, must know well about the treatment procedure of the injured teeth and should be consulted to the profession when necessary.

  • PDF

Evaluation for Volatile Organic Compounds (VOCs) Emitted from Fused Deposition Modeling (FDM) 3D Printing Filaments (FDM 3D프린터 소재에서 방출될 수 있는 휘발성유기화합물 평가)

  • Kim, Sungho;Park, Hae Dong;Chung, Eunkyo
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.32 no.2
    • /
    • pp.153-162
    • /
    • 2022
  • Objectives: Fused deposition modeling (FDM) 3D printer which is one of the material extrusion (MEX) technologies is an additive manufacturing (AM) process. 3D printers have been distributed widely in Korea, particularly in school and office, even at home. Several studies have shown that nanoparticles and volatile organic compounds (VOCs) were emitted from an FDM 3D printing process. The objective of this study was to identify types of chemicals possibly emitted from FDM 3D printing materials such as PLA (polylactic acid), ABS (acrylonitrile butadiene styrene), nylon, PETG (polyethylene terephthalate glycol), PVA (polyvinyl alcohol), PC (polycarbonate) filaments. Methods: 19 FDM 3D printing filaments which have been distributed in Korea were selected and analyzed VOCs emitted of 3D printing materials by headspace gas chromatography mass spectrometry (headspace GC-MS). Subsamples were put into a vial and heated up to 200℃ (500 rpm) during 20 minutes before analyzing FDM 3D printing filaments. Results: In the case of PLA filament, lactide and methyl methacrylate, the monomer components of one, were detected, and the volume ratio ranged 27~93%, 0.5~37% respectively. In the case of ABS filaments, styrene (50.5~59.1%), the monomer components of one, was detected. Several VOCs among acetaldehyde, toluene, ethylbenzene, xylene, etc were detected from each FDM 3D printing filaments. Conclusions: Several VOCs, semi-VOCs were emitted from FDM 3D printing filaments in this study and previous studies. Users were possibly exposed to ones so that we strongly believe that we recommend to install the ventilation system such as a local exhaust ventilation (LEV) when they operate the FDM 3D printers in a workplace.

Characteristics of the Cenozoic crustal deformation in SE Korea and their tectonic implications (한반도 동남부 신생대 지각변형의 주요 특징과 지구조적 의의)

  • Son, Moon;Kim, Jong-Sun;Chong, Hye-Yoon;Lee, Yung-Hee;Kim, In-Soo
    • The Korean Journal of Petroleum Geology
    • /
    • v.13 no.1
    • /
    • pp.1-16
    • /
    • 2007
  • The southeastern Korean Peninsula has experienced crustal multi-deformations according to changes of global tectonic setting during the Cenozoic. Characteristic features of the crustal deformations in relation to major Cenozoic tectonic events are summarized as follows. (1) Collision of Indian and Eurasian continents and abrupt change of movement direction of the Pacific plate (50${\sim}$43 Ma): The collision of Indian and Eurasian continents caused the eastward extrusion of East Asia block as a trench-rollback, and then the movement direction of the Pacific plate was abruptly changed from NNW to WNW. As a result, the strong suction-force along the plate boundary produced a tensional stress field trending EW or WNW-ESE in southeastern Korea, which resultantly induced the passive intrusion of NS or NNE trending mafic dike swarm. (2) Opening of the East Sea (25${\sim}$16 Ma): The NS or NNW-SSE trending opening of the East Sea generated a dextral shear stress regime trending NNW-SSE along the eastern coast line of the Korean Peninsula. As a result, pull-apart basins were developed in right bending and overstepping parts along major dextral strike slip faults trending NNW-SSE in southeastern Korea. The basins can be divided into two types on the basis of geometry and kinematics: Parallelogram-shaped basin (rhombochasm) and wedged-shaped basin (sphenochasm), respectively. In those times, the basins and adjacent basement blocks experienced clockwise rotation and northwestward tilting contemporaneously, and the basins often experienced a kind of propagating rifting from NE toward SE. At about 17Ma, the Yonil Tectonic Line, which is the westernmost border fault of the Miocene crustal deformation in southeastern Korea, began to move as a major dextral strike slip fault. (3) Clockwise rotation of southeastern Japan Island (about 15 Ma): The collision of the Izu-Bonin Arc and southeastern Japan Island, as a result of northward movement of the Philippine sea-plate, induced the clockwise rotation of southeastern Japan Island. The event caused the NW-SE compression in the Korea Strait as a tectonic inversion, which resultantly tenninated the basin extension and caused local counterclockwise rotation of blocks in southeastern Korea. (4) E-W compression in the East Asia (after about 5 Ma): Decreasing subduction angle of the Pacific plate and eastward movement of the Amurian plate have constructed the-top-to-west thrusts and become a major cause for earthquakes in southeastern Korea until the present time.

  • PDF