• Title/Summary/Keyword: Local emissions

Search Result 257, Processing Time 0.028 seconds

A Study on Strategy for Embodiment of Low Carbon City (저탄소도시 구현을 위한 전략수립에 관한 연구)

  • Baek, Cheong-Hoon;Park, Sang-Hoon
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.11 no.2
    • /
    • pp.83-92
    • /
    • 2011
  • The purpose of this study is to propose strategies for reducing greenhouse gas emissions on urban areas. This study is made up GHG emission estimation and emission prospect methods, setting of GHG reduction target, GHG reduction plan formulation and feasibility assessment. The significance of this study is as follows. First, this study provides the local government for the overall frame of low carbon strategies. Second, this study contribute to establishment of GHG emission reduction strategies in the local autonomy by providing GHG emission estimation and setting reduction target which is essential elements of reduction strategy. Third, we organize a reduction element for low carbon city embodiment and showed the way to assessment the reduction effect of these elements quantitatively.

An Analysis of the Case related with High PM10 Concentrations Using a Fine Grid Air Dispersion Modeling in Ansan Area (미세 격자 대기 확산 모델링을 통한 안산지역 PM10 고농도 사례 분석)

  • 송동웅;송창근
    • Journal of Environmental Science International
    • /
    • v.12 no.9
    • /
    • pp.977-986
    • /
    • 2003
  • In this study, the scenario for a numerical modeling of the fine grid scale air dispersion phenomena was proposed and an analysis of the special event which was occurred on September 3, 2002 was performed using by a coarse grid prognostic meteorological model, a fine grid diagnostic meteorological model and a fine grid air dispersion model. Based on the results, we found that the local circulations, like as land-sea breeze, should be seriously considered for evaluating the high PM10 concentration event and for making the reduction policy of the major air pollutant emissions in Ansan area.

Air quality modeling guideline for national air policy development and evaluation - Part I General information - (국가 대기정책수립 및 평가를 위한 대기질 모델링 가이드라인 - Part I 일반 사항 -)

  • Lee, Dae-Gyun;Lee, Yong-Mi;Lee, Mi-Hyang;Hong, Sung-Chul;Hong, Ji-Hyung
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.5
    • /
    • pp.537-546
    • /
    • 2013
  • In the Seoul Metropolitan Area(SMA) photochemical air pollutants, nitrogenic compound and particulate matters have increased substantially due to mobile sources, power plants and so on. Therefore 'Special Act on Seoul Metropolitan Air Quality Improvement' was enacted on 2003 in order to improve air quality in the SMA. According to the Special Act, Central and local government have developed the state implementation plan(SIP) to reduce air pollutant emissions from various local sources. One of the key elements of the SIP development is the air quality modeling since modeling results can be used to establish emissions control strategies as well as to demonstrate attainment of air quality goals for ozone, particulate matter, and so on. Air quality modeling, therefore, can be usefully utilized to investigate the effects of government's efforts according to control strategies or measures. Using the air quality model, we can determine whether the implementation plan should be revised or not. A number of questions, however, has been raised concerning accuracy, consistency and transparency of modeling results because if we do not trust modeling results, all the measures dependent on modeling becomes in vain. So, without dealing with these questions, we can not guarantee the reliability and utilizability of air quality modeling results. In this study, we tried to establish standard methodology for air quality modeling in order to ensure consistency and transparency of modeling results used in the development and evaluation of national air policy. For this purpose, we established air quality modeling guideline to provide or recommend modeling procedures, vertical and horizontal domains, input data of meteorological and air quality modeling and so on.

Evaluation of Environmental Contribution to the Effect of Reducing Carbon Dioxide Emission in Metropolitan Urban Railways (수도권 도시철도의 이산화탄소 배출량 절감 효과에 대한 환경 기여도 분석)

  • Joo, Jaemoom;Hong, Kiman;Hong, Youngsuk;Kim, Teagyun
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.3
    • /
    • pp.589-599
    • /
    • 2022
  • Purpose: The purpose of this study is to quantitatively identify the environmental contribution generated by urban rail users in the metropolitan area. Method: As for the analysis method, the mode choice and assignment of the traffic demand analysis were repeatedly performed on the assumption that each line was not opened for the metropolitan urban railway lines 1 to 9. After that, the environmental contribution according to changes in demand for the road was analyzed. Result: The total amount of carbon dioxide emissions and benefits were found to be the largest for subway line 1. However, when considering the number of stations and length, it was analyzed that the environmental contribution was the greatest in Metro Line 4. Conclusion: Measures to promote the use of public transportation are representative of environmental improvement policies, but there is a limit in that it is difficult for actual users/non-users to feel it. Therefore, it is judged that it is necessary to quantitatively present the effect in order to improve and spread awareness of the environment.

Flame-Vortex Interaction and Mixing in Turbulent Hydrogen Diffusion Flames with Coaxial Air (동축공기 수소확산화염에서 화염-와류 상호작용 및 혼합)

  • Kim, Mun-Ki;Oh, Jeong-Seog;Choi, Young-Il;Yoon, Young-Bin
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.149-154
    • /
    • 2007
  • This study examines the effect of acoustic excitation using forced coaxial air on the flame characteristics of turbulent hydrogen nonpremixed flames. A resonance frequency was selected to acoustically excite the coaxial air jet due to its ability to effectively amplify the acoustic amplitude and reduce flame length and NOx emissions. Acoustic excitation causes the flame length to decrease by 15 % and consequently, a 25 % reduction in EINOx is achieved, compared to a flame without acoustic excitation. Moreover, acoustic excitation induces periodical fluctuation of the coaxial air velocity, thus resulting in slight fluctuation of the fuel velocity. From phase-lock PIV and OH PLIF measurement, the local flow properties at the flame surface were investigated under acoustic forcing. During flame-vortex interaction in the near field region, the entrainment velocity and the flame surface area increased locally near the vortex. This increase in flame surface area and entrainment velocity is believed to be a crucial factor in reducing flame length and NOx emission in coaxial jet flames with acoustic excitation. Local flame extinction occurred frequently when subjected to an excessive strain rate, indicating that intense mass transfer of fuel and air occurs radially inward at the flame surface.

  • PDF

Analysis on Climate Action Plans of Portland, Oregon, USA (기후변화대응을 위한 미국 포틀랜드시 기후변화 실천계획의 주요 특성 분석에 관한 연구)

  • Choi, Joon-Sung
    • KIEAE Journal
    • /
    • v.13 no.3
    • /
    • pp.3-13
    • /
    • 2013
  • As climate change is increasingly recognised as an important global problem, a wide variety of policies and measures are emerging at global and local level to deal with the challenges from the anthropogenic global warming. While national and inter-national efforts characterized by limiting GHG emissions shows very little progress because of their expanse spatial scale and complicated political situations, local efforts have the potentials to ensure effective implementation, monitoring and continual improvement. In the context of local-scale climate policy, the city of Portland is known as one of the best leading cities for its progress of implementing climate change strategies. This paper will briefly discuss the city's efforts to solve the climate change problem and its achievements. The latest climate action plan is selected for the analysis on the followings; the framework of the action plan, the types of implementation methods, and the coordinating agencies. The progress status of each action plans is also reviewed. The purpose of this paper is to describe the main characteristics of the climate action plans and their implications from the intensive analysis on the city of Portland's case.

Reducing Efficiency Droop in (In,Ga)N/GaN Light-emitting Diodes by Improving Current Spreading with Electron-blocking Layers of the Same Size as the n-pad

  • Pham, Quoc-Hung;Chen, Jyh-Chen;Nguyen, Huy-Bich
    • Current Optics and Photonics
    • /
    • v.4 no.4
    • /
    • pp.380-390
    • /
    • 2020
  • In this study, the traditional electron-blocking layer (EBL) in (In,Ga)N/GaN light-emitting diodes is replaced by a circular EBL that is the same size as the n-pad. The three-dimensional (3D) nonlinear Poisson, drift-diffusion, and continuity equations are adopted to simulate current transport in the LED and its characteristics. The results indicate that the local carrier-density distribution obtained for the circular EBL design is more uniform than that for the traditional EBL design. This improves the uniformity of local radiative recombination and local internal quantum efficiency (IQE) at high injection levels, which leads to a higher lumped IQE and lower efficiency droop. With the circular EBL, the lumped IQE is higher in the outer active region and lower in the active region under the n-pad. Since most emissions from the active region under the n-pad are absorbed by the n-pad, obviously, an LED with a circular EBL will have a higher external quantum efficiency (EQE). The results also show that this LED works at lower applied voltages.

Experimental investigation of frictional resistance reduction with air layer on the hull bottom of a ship

  • Jang, Jinho;Choi, Soon Ho;Ahn, Sung-Mok;Kim, Booki;Seo, Jong Soo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.363-379
    • /
    • 2014
  • In an effort to cope with recent high oil price and global warming, developments of air lubricated ships have been pursued to reduce greenhouse gas emissions and to save fuel costs by reducing the frictional resistance. In this study, reduction in the frictional resistance by air lubrication with air layers generated on the lower surface of a flat plate was investigated experimentally in the large water tunnel of SSMB. The generated air layers were observed, and changes in the local frictional drag were measured at various flow rates of injected air. The results indicated that air lubrication with air layers might be useful in reducing the frictional resistance at specific conditions of air injection. Accordingly, resistance and self-propulsion tests for a 66K DWT bulk carrier were carried out in the towing tank of SSMB to estimate the expected net power savings.

Concentrations of Water-soluble Particulate, Gaseous tons and Volatile Organic Compounds in the Ambient Air of Ulsan (울산 대기 중의 입자상, 기체상 물질의 수용성 이온 성분과 휘발성 유기화합물의 농도)

  • 나광삼;김용표
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.4
    • /
    • pp.281-292
    • /
    • 1998
  • Ambient concentrations of gaseous, particulate phase ionic species, and VOCs (volatile organic compounds) were measured at two monitoring sites in the City of Ulsan during August 1997: one in industrial area and the other in downtown area. At each site, a three- stage filter pack sampler was used to collect fine particles and gaseous species, and air for VOC analysis was collected in stainless steel canisters. Concentrations of the ionic species at both sites were similar to each other. The VOC concentrations at the industrial site were approximately twice higher than those at the downtown site. This might be mainly due to the release of VOCs from the petrochemical industries. Daily variations of VOC concentrations at the industrial site were higher than that at the downtown site. This might be explained by the fact that emissions from industries were more irregular than those in downtown. The VOC concentrations in downtown were affected by both the local emissions and the emission from the petrochemical industries. The concentrations of selected hazardous organic components (HAPs) at the industrial site were similar to those of Yocheon industrial area but slightly higher than other cites and industrial areas, while those at the downtown site were comparable to those in other urban areas.

  • PDF

Spatiotemporal variations and source apportionment of NOx, SO2, and O3 emissions around heavily industrial locality

  • Al-Harbi, Meshari;Al-majed, Abdulrahman;Abahussain, Asma
    • Environmental Engineering Research
    • /
    • v.25 no.2
    • /
    • pp.147-162
    • /
    • 2020
  • The main objective of this study is to estimate the levels of pollution to which the community is presently exposed and to model the regimes of local air quality. Diurnal, daily, and monthly variations of NO, NO2, SO2, and O3 were thoroughly investigated in three areas; namely, residential, industrial, and terminal in Ras Al-Khafji. There is obvious diurnal variation in the concentration of these pollutants that clearly follows the diurnal variation of atmospheric temperature and main anthropogenic and industrial activities. Correlation analysis showed that meteorological conditions play a vital role in shaping the pattern and transportation of air pollutants and photochemical processes affecting O3 formation and destruction. Bivariate polar plots, an effective graphical tool that utilizes air pollutant concentrations' dependence on wind speed and wind direction, were used to identify prevailing emission sources. Non-buoyant ground-level sources like domestic heating and street transport emissions, various industrial stacks, and airport-related activities were considered dominant emission sources in observatory sites. This study offers valuable and detailed information on the status of air quality, which has considerable, quantifiable, and important public health benefits.