Browse > Article
http://dx.doi.org/10.4491/eer.2018.414

Spatiotemporal variations and source apportionment of NOx, SO2, and O3 emissions around heavily industrial locality  

Al-Harbi, Meshari (Department of Environmental Technology Management, College of Life Sciences, Kuwait University)
Al-majed, Abdulrahman (Department of Environmental Technology Management, College of Life Sciences, Kuwait University)
Abahussain, Asma (Department of Natural Resources and Environment, College of Graduate Studies, Arabian Gulf University)
Publication Information
Environmental Engineering Research / v.25, no.2, 2020 , pp. 147-162 More about this Journal
Abstract
The main objective of this study is to estimate the levels of pollution to which the community is presently exposed and to model the regimes of local air quality. Diurnal, daily, and monthly variations of NO, NO2, SO2, and O3 were thoroughly investigated in three areas; namely, residential, industrial, and terminal in Ras Al-Khafji. There is obvious diurnal variation in the concentration of these pollutants that clearly follows the diurnal variation of atmospheric temperature and main anthropogenic and industrial activities. Correlation analysis showed that meteorological conditions play a vital role in shaping the pattern and transportation of air pollutants and photochemical processes affecting O3 formation and destruction. Bivariate polar plots, an effective graphical tool that utilizes air pollutant concentrations' dependence on wind speed and wind direction, were used to identify prevailing emission sources. Non-buoyant ground-level sources like domestic heating and street transport emissions, various industrial stacks, and airport-related activities were considered dominant emission sources in observatory sites. This study offers valuable and detailed information on the status of air quality, which has considerable, quantifiable, and important public health benefits.
Keywords
Ambient air pollution; Bivariate polar plots; Source apportionment; Spatiotemporal variations;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lim Y, Kim H, Kim J, Bae S, Park H, Hong Y. Air pollution and symptoms of depression in elderly adults. Environ. Health Perspect. 2012;120:1023-1028.   DOI
2 Lewne M, Cyrys J, Meliefstee K, et al. Spatial variation in nitrogen dioxide in three European areas. Sci. Total Environ. 2004;332:217-230.   DOI
3 Karar K, Gupta A, Kumar A, Biswas A. Seasonal variations of $PM_{10}$ and TSP in residential and industrial sites in an urban area of Kolkata, India. Environ. Monit. Assess. 2006;118:369-381.   DOI
4 Johansson C, Norman M, Gidhagen L. Spatial & temporal variations of $PM_{10}$ and particle number concentrations in urban air. Environ. Monit. Assess. 2007;127:477-487.   DOI
5 Rooney M, Arku R, Dionisio K, et al. Spatial and temporal patterns of particulate matter sources and pollution in four communities in Accra, Ghana. Sci. Total Environ. 2012;435-436:107-114.   DOI
6 Al-Harbi M. Assessment of air quality in two different urban localities. Int. J. Environ. Res. 2014;8:15-26.
7 Triantafyllou A, Zoras S, Evagelopoulos V. Particulate matter over a seven year period in urban and rural areas within, proximal and far from mining and power station operations in Greece. Environ. Monit. Assess. 2006;122:41-60.   DOI
8 Lin W, Xu X, Ma Z, Zhao H, Liu X, Wang Y. Characteristics and recent trends of sulfur dioxide at urban, rural, and background sites in North China: Effectiveness of control measures. J. Environ. Sci. 2012;24:34-49.   DOI
9 Pedersen C, Raaschou-Nielsen O, Hertel O, Mortensen P. Air pollution from traffic and schizophrenia risk. Schizophr. Res. 2004;66:83-85.   DOI
10 Ozcan H. Long term variations of the atmospheric air pollutants in Istanbul City. Environ. Health Perspect. 2012;9:781-790.
11 Maji A. Air pollution and lungs. J. Assoc. Chest Phys. 2018;6:1-3.   DOI
12 Reedy R, Gobal K, Narasimhulu K, et al. Diurnal and seasonal variabilities in surface ozone and its precursor gases at a semi-arid site Anantapur ($14.62^{\circ}N$, $77.65^{\circ}E$, 331 m asl) in India. Int. J. Environ. Stud. 2008;65:247-265.   DOI
13 Nishanth T, Praseed K, Satheesh M, Valsaraj K. Analysis of ground level $O_3$ and $NO_x$ measured at Kannur, India. J. Earth Sci. Climate Change. 2012;3:1000111.
14 Paul J. Improved air quality on Turkish roads: Fuels and exhaust gas treatment. Environ. Res. Forum. 1997;7-8:145-152.
15 Jiang X, Me Xi, Feng D. Air pollution and chronic airway diseases:What should people know and do? J. Thorac. Dis. 2016;8:31-40.
16 Shusterman D. The effects of air pollutants and irritants on the upper airway. Proc. Am. Thorac. Soc. 2011;8:101-105.   DOI
17 Lisabeth L, Escobar J, Dvonch T, et al. Ambient air pollution and risk for ischemic stroke and transient ischemic attack. Ann. Neurol. 2008;64:53-59.   DOI
18 Volk H, Lurmann F, Penfold B, Hertz-Picciotto I, Mcconnell R. Traffic-related air pollution, particulate matter, and autism. JAMA Psychiat. 2013;70:71-77.   DOI
19 Sunyer J, Spix C, Quenel P, et al. Urban air pollution and emergency admissions for asthma in four European cities: The APHEA Project. Thorax 1997;52:760-765.   DOI
20 Stijn D, Quynh X, Hieu V, Luc H. Environmental health impacts of mobility and transport in Hai Phong, Vietnam. Stoch. Environ. Res. Risk Assess. 2011;25:363-376.   DOI
21 Reddy M, Venkararaman C. Inventory of aerosol and sulphur dioxide emissions from India: I-Fossil fuel combustion. Atmos. Environ. 2002;36:677-697.   DOI
22 Isobe Y, Yamada K, Wang Q, et al. Measurement of indoor sulfur dioxide emission from coal-biomass briquetties. Water, Air, Soil Pollut. 2005;163:341-353.   DOI
23 Park S, In H, Kim S, Lee Y. Estimation of sulfur deposition in South Korea. Atmos. Environ. 2000;34:3259-3269.   DOI
24 World Health Organization. Air quality guidelines for Europe. 2nd eds. In: WHO Regional Publications, European Series, No 91. Copenhagen: WHO Regional Publications; 2000.
25 Wong C, Atkinson R, Anderson H, et al. A tale of two cities:Effects of air pollution on hospital admissions in Hong Kong and London compared. Environ. Health Perspect. 2002;110:67-77.   DOI
26 Health Effects Institute (Hei). Health effects of outdoor air pollution in developing countries of Asia: A literature review. In:Special Report 15; April 2004; Boston.
27 Dales R, Burnett R, Smith-Doiron M, Stieb D, Jeffrey R. Air pollution and sudden infant death syndrome. Pediatrics 2004;113:628-631.   DOI
28 Abdul-Wahab S, Bakheit C, Al-Alawi S. Principal component and multiple regression analysis in modelling of ground-level ozone and factors affecting its concentrations. Environ. Modell. Softw. 2005;20:1263-1271.   DOI
29 Bloomfield P, Royle J, Steinberg L, Yang Q. Accounting for meteorological effects in measuring urban ozone levels and trends. Atmos. Environ. 1996;30:3067-3077.   DOI
30 Dapeng X, Yap D, Taylor P. Meteorologically adjusted ground level ozone trends in Ontario. Atmos. Environ. 1996;30:1117-1124.   DOI
31 Hussein T, Karppinen A, Kukkonen J, et al. Meteorological dependence of size-fractionated number concentrations of urban aerosol particles. Atmos. Environ. 2006;40:1427-1440.   DOI
32 Miller P, Mcbride J. Oxidant air pollution impacts in the mountain forests of Southern California. New York: Springer; 1999.
33 Baldasano J, Valera E, Jimenez P. Air quality data from large cities. Sci. Total Environ. 2003;307:141-165.   DOI
34 Ozden O, Dogeroglu T, Kara S. Assessment of ambient air quality in Eskisehir, Turkey. Environ. Int. 2008;34:678-687.   DOI
35 Carslaw DC, Ropkins K. Openair-An R package for air quality data analysis. Environ. Modell. Softw. 2012;27-28:52-61.   DOI
36 Katsouyanni K. Ambient air pollution and health. Br. Med. Bull. 2003;68:143-156.   DOI
37 Marcazzan G, Vaccaro S, Valli G, Vecchi R. Characterization of $PM_{10}$ and $PM_{2.5}$ particulate matter in the ambient air of Milan (Italy). Atmos. Environ. 2001;35:4639-4650.   DOI
38 San R, Stohl A, Karatzas K, Bohlerd T, James P, PeRez J. A modelling study of an extraordinary night time ozone episode over Madrid domain. Environ. Modell. Softw. 2005;20:587-593.   DOI
39 Duan J, Tan J, Yang L, Wu S, Hao J. Concentration, sources and ozone formation potential of volatile organic compounds (VOCs) during ozone episode in Beijing. Atmos. Res. 2008;88:25-35.   DOI
40 Ozbay B, Keskin G, Dogruparmak S, Ayberk S. Multivariate methods for ground-level ozone modeling. Atmos. Res. 2011;102:57-65.   DOI
41 Carslaw D, Beevers S, Ropkins K, Bell M. Detecting and quantifying aircraft and other on-airport contributions to ambient nitrogen oxides in the vicinity of a large international airport. Atmos. Environ. 2006;40:5424-5434.   DOI
42 Westmoreland E, Carslaw N, Carslaw D, Gillah A, Bates E. Analysis of air quality within a street canyon using statistical and dispersion modelling techniques. Atmos. Environ. 2007;41:9195-9205.   DOI
43 Carslaw D, Beevers S. Characterising and understanding emission sources using bivariate polar plots and k-means clustering. Environ. Modell. Softw. 2013;40:325-329.   DOI
44 Uria-Tellaetxe I, Carslaw D. Conditional bivariate probability function for source identification. Environ. Modell. Softw. 2014;59:1-9.   DOI
45 Streeton J. A review of existing health data on six air pollutants. A report prepared to the National Environment protection Council. Melbourne, Australia: NEPC; 1997.
46 Roussou T, Behkaris P. The respiratory effects of air pollution. In: Nicolopoulou-Stamati P, Hens L, Howard CV, eds. Environmental health impacts of transport and mobility. Dordrecht: Springer; 2005. p. 79-94.
47 Roberts-Semple D, Song F, Gao Y. Seasonal characteristics of ambient nitrogen oxides and ground-level ozone in metropolitan northeastern New Jersey. Atmos. Pollut. Res. 2012;3:247-257.   DOI
48 Tan J, Guo S, Ma Y, et al. Non-methane hydrocarbons and their ozone formation potentials in Foshan, China. Atmos. Environ. 2012;12:387-398.
49 Al-Harbi M, Radtke D, Epling W. Regeneration of a model $NO_x$ storage/reduction catalyst using hydrocarbons as the reductant. Appl. Catal. B. Environ. 2010;96:524-532.   DOI
50 Al-Harbi M, Epling W. The effects of regeneration-phase CO and/or H2 amount. Appl. Catal. B. Environ. 2009;89:315-325.   DOI
51 Carslaw D. The openair manual-Tools for analysis air pollution data. In: Manual for version 1.0. London: King's College; 2014.
52 Warneck P. Chemistry of the natural atmosphere. New York:Academic press; 1988.
53 Nair P, Chand D, Lal S, et al. Temporal variations in surface ozone at Thumba ($8.6^{\circ}N$, $77^{\circ}E$) - A tropical coastal site in India. Atmos. Environ. 2002;36:603-610.   DOI
54 Li G, Zhang R, Fan J, Tie X. Impacts of biogenic emissions on photochemical ozone production in Houston, Texas. J. Geophys. Res. 2007;112:1-12.
55 Filella I, Penuelas J. Daily, weekly and seasonal relationships among VOCs, $NO_x$ and $O_3$ in a semi-urban area near Barcelona. J. Atmos. Chem. 2006;54:189-201.   DOI
56 Varshney CK, Aggarwal M. Ozone pollution in the urban atmosphere of Delhi. Atmos. Environ. 1992;26:291-294.   DOI
57 Lorenzini G, Nali C, Panicucci A. Surface ozone in PISA (Italy):A six year study. Atmos. Environ. 1992;28:3155-3164.   DOI
58 Abdul-Wahab S, Bouhamra W. Diurnal variations of air pollution from motor vehicles in residential area. Int. J. Environ. Stud. 2004;61:73-98.   DOI
59 Bell M, Mcdermott A, Zeger S, Samet J, Dominici F. Ozone and short-term mortality in 95 US urban communities, 1987-2000. JAMA 2004;292:2372-2378.   DOI
60 Bell M, Dominici F, Samet J. A meta-analysis of time-series studies of ozone and mortality with comparison to the national morbidity, mortality and air pollution study. Epidemiology 2005;16:436-445.   DOI
61 Ito K, De Leon S, Lippmann M. Association between ozone and daily mortality: Analysis and meta-analysis. Epidemiology 2005;16:446-457.   DOI
62 Manahan S. Toxicological chemistry. 2nd eds. Chelsea: Lewis Publishers, Inc.; 1992.
63 Ott WR. A physical explanation of the lognormality of pollutant concentrations. J. Air Waste Manage. Assoc. 1990;40:1378-1383.   DOI
64 Alter H, Oswald R. Results of indoor radon measurements using the track etch method. Health Phys. 1983;45:425-428.   DOI
65 Matsumoto K, Naggo I, Tanaka H, Miyaji H, Iida K, Ikebe Y. Seasonal characteristics of organic and inorganic species and their size distributions in atmospheric aerosols over the northwest Pacific Ocean. Atmos. Environ. 1998;32:1931-1946.   DOI
66 Al-Harbi M. Characteristics and composition of the falling dust in urban environment. Int. J. Environ. Sci. Technol. 2015;12:641-652.   DOI
67 Morawska L, Vishvakarman D, Kerrie L, Stephen T. Spatial variation of airborne pollutant concentrations in Brisbane, Australia and its potential impact on population exposure assessment. Atmos. Environ. 2002;36:3545-3555.   DOI
68 Monn C, Shaeppi G. Concentrations of total suspended particulates, fine particles and their anionic compounds in ambient air and indoor air. Environ. Technol. 1993;14:869-875.   DOI
69 Meng Z, Dabdub D, Seinfeld J. Chemical coupling between atmospheric ozone and particulate matter. Science 1997;277:116-119.   DOI
70 Riga-Karandinos A, Saitanis C. Comparative assessment of ambient air quality in two typical Mediterranean coastal cities in two typical Mediterranean coastal cities in Greece. Chemosphere 2005;59:1125-1136.   DOI
71 Ying Q, Kleeman M. Effect of aerosol UV extinction on the formation of ozone and secondary particulate matter. Atmos. Environ. 2003;37:5047-5068.   DOI
72 Wijeratne I, Bijker W. Mapping dispersion of urban air pollution with remote sensing. International Archives of Photogrammetry, Remote Sensing, and Spatial Information Sciences. In: ISPRS Technical Commission II Symposium; 12-14 July 2006; Vienna. Vol. XXXVI - Part 2.
73 Ghazali N, Ramli N, Yahaya A, Yusof N, Sansuddin N, AlMadhoun W. Transformation of nitrogen dioxide into ozone and prediction of ozone concentrations using multiple linear regression techniques. Environ. Monit. Assess. 2010;165:475-489.   DOI