DOI QR코드

DOI QR Code

Reducing Efficiency Droop in (In,Ga)N/GaN Light-emitting Diodes by Improving Current Spreading with Electron-blocking Layers of the Same Size as the n-pad

  • Pham, Quoc-Hung (Department of Mechanical Engineering, National Central University) ;
  • Chen, Jyh-Chen (Department of Mechanical Engineering, National Central University) ;
  • Nguyen, Huy-Bich (Department of Mechanical Engineering, Nong Lam University)
  • Received : 2020.02.21
  • Accepted : 2020.06.25
  • Published : 2020.08.25

Abstract

In this study, the traditional electron-blocking layer (EBL) in (In,Ga)N/GaN light-emitting diodes is replaced by a circular EBL that is the same size as the n-pad. The three-dimensional (3D) nonlinear Poisson, drift-diffusion, and continuity equations are adopted to simulate current transport in the LED and its characteristics. The results indicate that the local carrier-density distribution obtained for the circular EBL design is more uniform than that for the traditional EBL design. This improves the uniformity of local radiative recombination and local internal quantum efficiency (IQE) at high injection levels, which leads to a higher lumped IQE and lower efficiency droop. With the circular EBL, the lumped IQE is higher in the outer active region and lower in the active region under the n-pad. Since most emissions from the active region under the n-pad are absorbed by the n-pad, obviously, an LED with a circular EBL will have a higher external quantum efficiency (EQE). The results also show that this LED works at lower applied voltages.

Keywords

References

  1. X. Guo and E. F. Schubert, "Current crowding in GaN/ InGaN light emitting diodes on insulating substrates," J. Appl. Phys. 90, 4191-4195 (2001). https://doi.org/10.1063/1.1403665
  2. M.-H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, "Origin of efficiency droop in GaN-based light-emitting diodes," Appl. Phys. Lett. 91, 183507 (2007). https://doi.org/10.1063/1.2800290
  3. D.-S. Shin, D.-P. Han, J.-Y. Oh, and J.-I. Shim, "Study of droop phenomena in InGaN-based blue and green lightemitting diodes by temperature-dependent electroluminescence," Appl. Phys. Lett. 100, 153506 (2012). https://doi.org/10.1063/1.3703313
  4. Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, "Auger recombination in InGaN measured by photoluminescence," Appl. Phys. Lett. 91, 141101 (2007). https://doi.org/10.1063/1.2785135
  5. M. Binder, A. Nirschl, R. Zeisel, T. Hager, H.-J. Lugauer, M. Sabathil, D. Bougeard, J. Wagner, and B. Galler, "Identification of nnp and npp Auger recombination as significant contributor to the efficiency droop in (GaIn)N quantum wells by visualization of hot carriers in photoluminescence," Appl. Phys. Lett. 103, 071108 (2013). https://doi.org/10.1063/1.4818761
  6. E. Kioupakis, P. Rinke, K. T. Delaney, and C. G. Van de Walle, "Indirect Auger recombination as a cause of efficiency droop in nitride light-emitting diodes," Appl. Phys. Lett. 98, 161107 (2011). https://doi.org/10.1063/1.3570656
  7. K. D. Chik, "A theoretical analysis of Auger recombination induced energetic carrier leakage in GaInAsP/InP double heterojunction lasers and light emitting diodes," J. Appl. Phys. 63, 4688-4698 (1988). https://doi.org/10.1063/1.340124
  8. A. Laubsch, M. Sabathil, W. Bergbauer, M. Strassburg, H. Lugauer, M. Peter, S. Lutgen, N. Linder, K. Streubel, J. Hader, J. V. Moloney, B. Pasenow, and S. W. Koch, "On the origin of IQE-'droop' in InGaN LEDs," Phys. Status Solidi C 6, S913-S916 (2009). https://doi.org/10.1002/pssc.200880950
  9. C.-K. Li and Y.-R. Wu, "Study on the current spreading effect and light extraction enhancement of vertical GaN/ InGaN LEDs," IEEE Trans. Electron Devices 59, 400-407 (2012). https://doi.org/10.1109/TED.2011.2176132
  10. Q.-H. Pham, J.-C. Chen, and H.-B. Nguyen, "Three-dimensional numerical study on the efficiency droop in InGaN/ GaN light-emitting diodes," IEEE Photon. J. 11, 1-17 (2019).
  11. L. Zhang, X. C. Wei, N. X. Liu, H. Lu, J. P. Zeng, J. X. Wang, Y. P. Zeng, and J. M. Li, "Improvement of efficiency of GaN-based polarization-doped light-emitting diodes grown by metalorganic chemical vapor deposition," Appl. Phys. Lett. 98, 241111 (2011). https://doi.org/10.1063/1.3601469
  12. S. Choi, H. J. Kim, S.-S. Kim, J. Liu, J. Kim, J.-H. Ryou, R. D. Dupuis, A. M. Fischer, and F. A. Ponce, "Improvement of peak quantum efficiency and efficiency droop in IIInitride visible light-emitting diodes with an InAlN electronblocking layer," Appl. Phys. Lett. 96, 221105 (2010). https://doi.org/10.1063/1.3441373
  13. Y.-Y. Zhang, X.-L. Zhu, Y.-A. Yin, and J. Ma, "Performance enhancement of near-UV light-emitting diodes with an InAlN/GaN superlattice electron-blocking layer," IEEE Electron Device Lett. 33, 994-996 (2012). https://doi.org/10.1109/LED.2012.2197593
  14. S.-H. Han, D.-Y. Lee, S.-J. Lee, C.-Y. Cho, M.-K. Kwon, S. P. Lee, D. Y. Noh, D.-J. Kim, Y. C. Kim, and S.-J. Park, "Effect of electron blocking layer on efficiency droop in InGaN/GaN multiple quantum well light-emitting diodes," Appl. Phys. Lett. 94, 231123 (2009). https://doi.org/10.1063/1.3153508
  15. K.-H. Kim, S.-W. Lee, S.-N. Lee, and J. Kim, "Effect of p-$Al_xGa_{1-x}N$ electron blocking layer on optical and electrical properties in GaN-based light emitting diodes," J. Vac. Sci. Technol. B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 30, 061204 (2012).
  16. L. Zhang, K. Ding, N. X. Liu, T. B. Wei, X. L. Ji, P. Ma, J. C. Yan, J. X. Wang, Y. P. Zeng, and J. M. Li, "Theoretical study of polarization-doped GaN-based lightemitting diodes," Appl. Phys. Lett. 98, 101110 (2011). https://doi.org/10.1063/1.3565173
  17. C. S. Xia, Z. M. Simon Li, and Y. Sheng, "On the importance of AlGaN electron blocking layer design for GaNbased light-emitting diodes," Appl. Phys. Lett. 103, 233505 (2013). https://doi.org/10.1063/1.4839417
  18. S. H. Tu, J. C. Chen, F. S. Hwu, G. J. Sheu, F. L. Lin, S. Y. Kuo, J. Y. Chang, and C. C. Lee, "Characteristics of current distribution by designed electrode patterns for high power ThinGaN LED," Solid-State Electron. 54, 1438-1443 (2010). https://doi.org/10.1016/j.sse.2010.04.044
  19. B. Galler, P. Drechsel, R. Monnard, P. Rode, P. Stauss, S. Froehlich, W. Bergbauer, M. Binder, M. Sabathil, and B. Hahn, "Influence of indium content and temperature on Auger-like recombination in InGaN quantum wells grown on (111) silicon substrates," Appl. Phys. Lett. 101, 131111 (2012). https://doi.org/10.1063/1.4754688
  20. B. Hahn, B. Galler, and K. Engl, "Development of highefficiency and high-power vertical light emitting diodes," Jpn. J. Appl. Phys. 53, 100208 (2014). https://doi.org/10.7567/JJAP.53.100208
  21. N. D. Arora, J. R. Hauser, and D. J. Roulston, "Electron and hole mobilities in silicon as a function of concentration and temperature," IEEE Trans. Electron Devices 29, 292-295 (1982). https://doi.org/10.1109/T-ED.1982.20698
  22. J. Piprek and S. Li, "Electron leakage effects on GaN-based light-emitting diodes," Opt. Quantum Electron. 42, 89-95 (2010). https://doi.org/10.1007/s11082-011-9437-z
  23. V. Fiorentini, F. Bernardini, and O. Ambacher, "Evidence for nonlinear macroscopic polarization in III-V nitride alloy heterostructures," Appl. Phys. Lett. 80, 1204-1206 (2002). https://doi.org/10.1063/1.1448668
  24. J.-R. Chen, C.-H. Lee, T.-S. Ko, Y.-A. Chang, T.-C. Lu, H.-C. Kuo, Y.-K. Kuo, and S.-C. Wang, "Effects of built-in polarization and carrier overflow on InGaN quantum-well lasers with electronic blocking layers," J. Lightwave Technol. 26, 329-337 (2008). https://doi.org/10.1109/JLT.2007.909908
  25. D. J. Griffiths, "Introduction to electrodynamics," Am. J. Phs. 73, 574 (2005). https://doi.org/10.1119/1.4766311
  26. P. Tian, J. J. D. McKendry, J. Herrnsdorf, S. Watson, R. Ferreira, I. M. Watson, E. Gu, A. E. Kelly, and M. D. Dawson, "Temperature-dependent efficiency droop of blue InGaN micro-light emitting diodes," Appl. Phys. Lett. 105, 171107 (2014). https://doi.org/10.1063/1.4900865
  27. E. Kioupakis, Q. Yan, D. Steiauf, and C. G. Van de Walle, "Temperature and carrier-density dependence of Auger and radiative recombination in nitride optoelectronic devices," New J. Phys. 15, 125006 (2013). https://doi.org/10.1088/1367-2630/15/12/125006
  28. H. Fu, Z. Lu, and Y. Zhao, "Analysis of low efficiency droop of semipolar InGaN quantum well light-emitting diodes by modified rate equation with weak phase-space filling effect," AIP Advances 6, 065013 (2016). https://doi.org/10.1063/1.4954296
  29. H.-Y. Ryu, D.-S. Shin, and J.-I. Shim, "Analysis of efficiency droop in nitride light-emitting diodes by the reduced effective volume of InGaN active material," Appl. Phys. Lett. 100, 131109 (2012). https://doi.org/10.1063/1.3698113
  30. Q. Dai, M. F. Schubert, M. H. Kim, J. K. Kim, E. F. Schubert, D. D. Koleske, M. H. Crawford, S. R. Lee, A. J. Fischer, G. Thaler, and M. A. Banas, "Internal quantum efficiency and nonradiative recombination coefficient of GaInN/GaN multiple quantum wells with different dislocation densities," Appl. Phys. Lett. 94, 111109 (2009). https://doi.org/10.1063/1.3100773
  31. Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, "Auger recombination in InGaN measured by photoluminescence," Appl. Phys. Lett. 91, 141101 (2007). https://doi.org/10.1063/1.2785135
  32. X. Meng, L. Wang, Z. Hao, Y. Luo, C. Sun, Y. Han, B. Xiong, J. Wang, and H. Li, "Study on efficiency droop in InGaN/GaN light-emitting diodes based on differential carrier lifetime analysis," Appl. Phys. Lett. 108, 013501 (2016). https://doi.org/10.1063/1.4939593
  33. B.-C. Lin, K.-J. Chen, C.-H. Wang, C.-H. Chiu, Y.-P. Lan, C.-C. Lin, P.-T. Lee, M.-H. Shih, Y.-K. Kuo, and H.-C. Kuo, "Hole injection and electron overflow improvement in InGaN/GaN light-emitting diodes by a tapered AlGaN electron blocking layer," Opt. Express 22, 463-469 (2014). https://doi.org/10.1364/OE.22.000463
  34. E. F. Schubert, T. Gessmann, and J. K. Kim, "Light emitting diodes," in Kirk-Othmer Encyclopedia of Chemical Technology, 2nd ed. (John Wiley & Sons, NY, USA. 2005).
  35. A. David and M. J. Grundmann, "Droop in InGaN lightemitting diodes: A differential carrier lifetime analysis," Appl. Phys. Lett. 96, 103504 (2010). https://doi.org/10.1063/1.3330870
  36. J. Piprek, "Efficiency droop in nitride-based light-emitting diodes," Phys. Status Solidi A 207, 2217-2225 (2010). https://doi.org/10.1002/pssa.201026149
  37. C.-K. Sun, S. Keller, G. Wang, M. Minsky, J. E. Bowers, and S. P. DenBaars, "Radiative recombination lifetime measurements of InGaN single quantum well," Appl. Phys. Lett. 69, 1936-1938 (1996). https://doi.org/10.1063/1.117627
  38. F. Romer and B. Witzigmann, "Effect of Auger recombination and leakage on the droop in InGaN/GaN quantum well LEDs," Opt. Express 22, A1440-A1452 (2014). https://doi.org/10.1364/OE.22.001440
  39. H. Zhao, G. Liu, J. Zhang, R. A. Arif, and N. Tansu, "Analysis of internal quantum efficiency and current injection efficiency in III-nitride light-emitting diodes," J. Disp. Technol. 9, 212-225 (2013). https://doi.org/10.1109/JDT.2013.2250252
  40. M. Deppner, F. Romer, and B. Witzigmann, "Auger carrier leakage in III-nitride quantum-well light emitting diodes," Phys. Status Solidi Rapid Res. Lett. 6, 418-420 (2012). https://doi.org/10.1002/pssr.201206367
  41. J. Hader, J. V. Moloney, B. Pasenow, S. W. Koch, M. Sabathil, N. Linder, and S. Lutgen, "On the importance of radiative and Auger losses in GaN-based quantum wells," Appl. Phys. Lett. 92, 261103 (2008). https://doi.org/10.1063/1.2953543
  42. C. H. Wang, C. C. Ke, C. Y. Lee, S. P. Chang, W. T. Chang, J. C. Li, Z. Y. Li, H. C. Yang, H. C. Kuo, T. C. Lu, and S. C. Wang, "Hole injection and efficiency droop improvement in InGaN/GaN light-emitting diodes by bandengineered electron blocking layer," Appl. Phys. Lett. 97, 261103 (2010). https://doi.org/10.1063/1.3531753
  43. R. M. Perks, A. Porch, D. V. Morgan, and J. Kettle, "Theoretical and experimental analysis of current spreading in AlGaInP light emitting diodes," J. Appl. Phys. 100, 083109 (2006). https://doi.org/10.1063/1.2358396
  44. B. Laikhtman, A. Gourevitch, D. Donetsky, D. Westerfeld, and G. Belenky, "Current spread and overheating of high power laser bars," J. Appl. Phys. 95, 3880-3889 (2004). https://doi.org/10.1063/1.1655687