• Title/Summary/Keyword: Local and global Stability

Search Result 115, Processing Time 0.031 seconds

Clinical presentation and specific stabilizing exercise management in Lumbar segmental instability (요추분절의 불안정성에 대한 임상적 소개와 안정성 운동관리)

  • Jung Yeon-Woo;Bae Sung-Soo
    • The Journal of Korean Physical Therapy
    • /
    • v.15 no.1
    • /
    • pp.155-170
    • /
    • 2003
  • Lumbar segmental instability is considered to represent a significant sub-group within the chronic low back pain population. This condition has a unique clinical presentation that displays its symptoms and movement dysfunction within the neutral zone of the motion segment. The loosening of the motion segment secondary to injury and associated dysfunction of the local muscle system renders it biomechanically vulnerable in the neutral zone. There in evidence of muscle dysfunction related to the control of the movement system. There is a clear link between reduced proprioceptive input, altered slow motor unit recruitment and the development of chronic pain states. Dysfunction in the global and local muscle systems in presented to support the development of a system of classification of muscle function and development of dysfunction related to musculoskeletal pain. The global muscles control range of movement and alignment, and evidence of dysfunction is presented in terms of imbalance in recruitment and length between the global stability muscles and the global mobility muscles. The local stability muscles demonstrate evidence of failure of aeequate segmental control in terms of allowing excessive uncontrolled translation or specific loss of cross-sectional area at the site of pathology Motor recruitment deficits present as altered timing and patterns of recruitment. The evidence of local and global dysfunction allows the development of an integrated model of movement dysfunction. The clinical diagnosis of this chronic low back pain condition is based on the report of pain and the observation of movement dysfunction within the neutral zone and the associated finding of excessive intervertebral motion at the symptomatic level. Four different clinical patterns are described based on the directional nature of the injury and the manifestation of the patient's symptoms and motor dysfunction. A specific stabilizing exercise intervention based on a motor learning model in proposed and evidence for the efficacy of the approach provided.

  • PDF

Dynamic control of redundant manipulators based on stbility condition

  • Chung, W.J.;Chung, W.K.;Youm, Y.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.902-907
    • /
    • 1993
  • An efficient dynamic control algorithm that outperforms existing local torque optimization techniques for redundant manipulators is presented. The method resolves redundancy at the acceleration level. In this method, a systematic switching technique as a trade-off means between local torque optimization and global stability is proposed based on the stability condition proposed by Maciejewski [1]. Comparative simulations on a three-link planar arm show the effectiveness of the proposed method.

  • PDF

Case study on stability performance of asymmetric steel arch bridge with inclined arch ribs

  • Hu, Xinke;Xie, Xu;Tang, Zhanzhan;Shen, Yonggang;Wu, Pu;Song, Lianfeng
    • Steel and Composite Structures
    • /
    • v.18 no.1
    • /
    • pp.273-288
    • /
    • 2015
  • As one of the most common failure types of arch bridges, stability is one of the critical aspects for the design of arch bridges. Using 3D finite element model in ABAQUS, this paper has studied the stability performance of an arch bridge with inclined arch ribs and hangers, and the analysis also took the effects of geometrical and material nonlinearity into account. The impact of local buckling and residual stress of steel plates on global stability and the applicability of fiber model in stability analysis for steel arch bridges were also investigated. The results demonstrate an excellent stability of the arch bridge because of the transverse constraint provided by transversely-inclined hangers. The distortion of cross section, local buckling and residual stress of ribs has an insignificant effect on the stability of the structure, and the accurate ultimate strength may be obtained from a fiber model analysis. This study also shows that the yielding of the arch ribs has a significant impact on the ultimate capacity of the structure, and the bearing capacity may also be approximately estimated by the initial yield strength of the arch rib.

Composite adaptive neural network controller for nonlinear systems (비선형 시스템제어를 위한 복합적응 신경회로망)

  • 김효규;오세영;김성권
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.14-19
    • /
    • 1993
  • In this paper, we proposed an indirect learning and direct adaptive control schemes using neural networks, i.e., composite adaptive neural control, for a class of continuous nonlinear systems. With the indirect learning method, the neural network learns the nonlinear basis of the system inverse dynamics by a modified backpropagation learning rule. The basis spans the local vector space of inverse dynamics with the direct adaptation method when the indirect learning result is within a prescribed error tolerance, as such this method is closely related to the adaptive control methods. Also hash addressing technique, similar to the CMAC functional architecture, is introduced for partitioning network hidden nodes according to the system states, so global neuro control properties can be organized by the local ones. For uniform stability, the sliding mode control is introduced when the neural network has not sufficiently learned the system dynamics. With proper assumptions on the controlled system, global stability and tracking error convergence proof can be given. The performance of the proposed control scheme is demonstrated with the simulation results of a nonlinear system.

  • PDF

A Study on Stability Hanging Guide Frame used in Floating Crane (해상 Crane용 Guide Frame의 안정성에 관한 연구)

  • 장동일;민인기
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.1
    • /
    • pp.33-40
    • /
    • 1999
  • In this paper, a damaged example of hanging guide frame used in the lifting of shore protection caisson was investigated. An examination of the stress and stability of members was carried out by structural analysis and the causes of damages was investigated. The stability analysis considering local and global stress buckling was performed. As a result of stability analysis. the first structure was unstable structure. Therefore improved structure was examined and the best effective methodology was the reassignment of wire.

  • PDF

Numerical Methods for Compressible Boundary Flow Stability

  • Dong, Xue-Zhi;Tan, Chun-Qing
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.737-742
    • /
    • 2008
  • Methods for the solution of linear stability for compressible boundary layers are developed. Both the global and local methods for stability analysis are used. Both methods are use in solution of Coutte shear flow and the results are analysis and compare. Some well-known conclusions of Coutte flow are proved by these methods again.

  • PDF

A study on relearning program of deep stabilizing muscle for low back pain (요통에 적용된 심부 안정근 재교육 프로그램에 관한 연구)

  • Koo, Hee-Seo;Kim, Soon-Ja
    • The Journal of Korean Physical Therapy
    • /
    • v.16 no.4
    • /
    • pp.11-22
    • /
    • 2004
  • The concept of segmental stabilization has been one of the most exciting advancements in the field of physical therapy. Specific deep stabilizing muscle have proven to reverse motor control deficits that occurs after back injury. After an injury, a new motor programming strategy is adopted and there is excessive recruitment of the large , strong , global muscular system works instead of small segmental deep muscle recruitment for stability. Many physical therapists and doctors mistakenly prescribe therapeutic exercise for low back pain to use larger, superficial musculature to strengthen the spine for stability and pain control. But motor control coordination of local segmental muscle is actually the key to stability and pain control, not strengthening of global muscle. A recent focus in physiotherapy management of patients with chronic back pain has been the specific training of muscles surrounding the lumbar spine whose primary role is considered to be the provision of dynamic stability and segmental control to the spine. These are the deep transverse abdominis muscle and lumbar multifudus.

  • PDF

Global Periodic Solutions in a Delayed Predator-Prey System with Holling II Functional Response

  • Jiang, Zhichao;Wang, Hongtao;Wang, Hongmei
    • Kyungpook Mathematical Journal
    • /
    • v.50 no.2
    • /
    • pp.255-266
    • /
    • 2010
  • We consider a delayed predator-prey system with Holling II functional response. Firstly, the paper considers the stability and local Hopf bifurcation for a delayed prey-predator model using the basic theorem on zeros of general transcendental function, which was established by Cook etc.. Secondly, special attention is paid to the global existence of periodic solutions bifurcating from Hopf bifurcations. By using a global Hopf bifurcation result due to Wu, we show that the local Hopf bifurcation implies the global Hopf bifurcation after the second critical value of delay. Finally, several numerical simulations supporting the theoretical analysis are given.

An Extended Model Evaluation Method under Uncertainty in Hydrologic Modeling

  • Lee, Giha;Youn, Sangkuk;Kim, Yeonsu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.5
    • /
    • pp.13-25
    • /
    • 2015
  • This paper proposes an extended model evaluation method that considers not only the model performance but also the model structure and parameter uncertainties in hydrologic modeling. A simple reservoir model (SFM) and distributed kinematic wave models (KWMSS1 and KWMSS2 using topography from 250-m, 500-m, and 1-km digital elevation models) were developed and assessed by three evaluative criteria for model performance, model structural stability, and parameter identifiability. All the models provided acceptable performance in terms of a global response, but the simpler SFM and KWMSS1 could not accurately represent the local behaviors of hydrographs. Moreover, SFM and KWMSS1 were structurally unstable; their performance was sensitive to the applied objective functions. On the other hand, the most sophisticated model, KWMSS2, performed well, satisfying both global and local behaviors. KMSS2 also showed good structural stability, reproducing hydrographs regardless of the applied objective functions; however, superior parameter identifiability was not guaranteed. A number of parameter sets could result in indistinguishable hydrographs. This result indicates that while making hydrologic models complex increases its performance accuracy and reduces its structural uncertainty, the model is likely to suffer from parameter uncertainty.

Bicriteria optimal design of open cross sections of cold-formed thin-walled beams

  • Ostwald, M.;Magnucki, K.;Rodak, M.
    • Steel and Composite Structures
    • /
    • v.7 no.1
    • /
    • pp.53-70
    • /
    • 2007
  • This paper presents a analysis of the problem of optimal design of the beams with two I-type cross section shapes. These types of beams are simply supported and subject to pure bending. The strength and stability conditions were formulated and analytically solved in the form of mathematical equations. Both global and selected types of local stability forms were taken into account. The optimization problem was defined as bicriteria. The cross section area of the beam is the first objective function, while the deflection of the beam is the second. The geometric parameters of cross section were selected as the design variables. The set of constraints includes global and local stability conditions, the strength condition, and technological and constructional requirements in the form of geometric relations. The optimization problem was formulated and solved with the help of the Pareto concept of optimality. During the numerical calculations a set of optimal compromise solutions was generated. The numerical procedures include discrete and continuous sets of the design variables. Results of numerical analysis are presented in the form of tables, cross section outlines and diagrams. Results are discussed at the end of the work. These results may be useful for designers in optimal designing of thin-walled beams, increasing information required in the decision-making procedure.