• Title/Summary/Keyword: Local Water Mass Flux

Search Result 21, Processing Time 0.027 seconds

A Method for Critical Heat Flux Prediction in Vertical Round Tubes with Axially Non-uniform Heat Flux Profile

  • Shim, Jae-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.1
    • /
    • pp.13-21
    • /
    • 2008
  • In this study a method to predict CHF(Critical heat flux) in vertical round tubes with axially non-uniform cosine heat flux distribution for water was examined. For this purpose a local condition hypothesis based CHF prediction correlation for uniform heat flux in vertical round tubes for water was developed from 9,366 CHF data points. The local correlation consisted of 4 local condition variables: the system pressure(P), tube diameter(D), mass flux of water(G), and 'true mass quality' of vapor($X_t$). The CHF data points used were collected from 13 different published sources having the following operation ranges: 1.01 ${\leq}$ P (pressure) ${\leq}$ 206.79 bar, 9.92${\leq}$ G (mass flux) ${\leq}$ 18,619.39 $kg/m^2s$, 0.00102 ${\leq}$ D(diameter) ${\leq}$ 0.04468 m, 0.0254${\leq}$ L (length) ${\leq}$ 4.966 m, 0.11 ${\leq}$ qc (CHF) ${\leq}$ 21.41 $MVW/m^2$, and -0.87 ${\leq}X_c$ (exit qualities) ${\leq}$ 1.58. The result of this work showed that a uniform CHF correlation can be easily extended to predict CHF in axially non-uniform heat flux heater. In addition, the location of the CHF in axially non-uniform tube can also be determined. The local uniform correlation predicted CHF in tubes with axially cosine heat flux profile within the root mean square error of 12.42% and average error of 1.06% for 297 CHF data points collected from 5 different published sources.

Deposition Characteristics of the Sandbar and Estimation of the Mass Transport Flux in the Nakdong Estuary (낙동강 하구역의 사주 퇴적특성과 물질수송플럭스 산정)

  • YOON RAN-SAM;LEE IN-CHEOL;Ryu CHEONG-RO
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.131-137
    • /
    • 2004
  • This paper is intended as an investigation of the deposition characteristics and mass transport flux estimation in the Nakdong estuary. In order to understand the effects of the tidal current circulation which influenced to an estuary terrain change, the seawater circulation calculation by the use of 2D numerical model for the three cases of without riverflow, mean and flood riverflow quantity condition practiced and each sectional net-flux of water quantity between sandbars(so called, dung) estimated. It may be that an estuary terrain change due to the large scale construction and reclamation at the Nakdong estuary influence to the long-time deposition characteristics. by the revim for the old research, we know that the development of the local sandbars has been moved toward the east-side from the west-side estuary area after the construction of the Nakdong river dike, at present the strong-acted location is the Bakhap-dung of the front sea of Tadea. The seawater circulation pattern at this large scale area of tidal flat bring on a change due to the water quantity outflowing from the Nakdong river. Base on the calculated results for the section net-flux of water quantity, we see that the accumulating action very strong at the local sea around Jangjado, Bakhapdung and Tadae for the case of flood riverflow quantity condition, but at the local sea around Jinudo for the another cases. Consequently, it is emphasized that in the Nakdong estuary the main sensitive regions which influenced from the discharge of riverflow were the local sea around Jangjado, Bakhapdung, Tadae and Jinudo.

  • PDF

Effect of Chip Spacing in a Multichip Module on the Heat Transfer for Paraffin Slurry Flow

  • Choi, Min-Goo;Cho, Keum-Nam
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.9
    • /
    • pp.997-1004
    • /
    • 2000
  • The experiments were conducted by using water and paraffin slurry to investigate the effect of a chip spacing in the multichip module on the cooling characteristics from an in-line $4{\times}3$ array of discrete heat sources which were flush mounted on the top wall of a channel. The experimental parameters were chip spacing in a multichip module, heat flux of simulated VLSI chip, mass fraction of paraffin slurry, and channel Reynolds number. The removable heat flux at the same chip surface temperature decreased as the chip spacing decreased at the first and fourth rows. The local heat transfer coefficients for the paraffin slurry were larger than those for water, and the chip spacing on the local heat transfer coefficients for paraffin slurry influenced less than that for water. The enhancement factor for paraffin slurry showed the largest value at a mass fraction of 5% regardless of the chip spacing, and the enhancement factors increased as the chip spacing decreased. This means that the paraffin slurry is more effective than water for cooling of the highly integrated multichip module.

  • PDF

Heat and Mass Transfer Characteristics and Performance Evaluation of a Double-Tube Condenser for an Alternative Refrigerant (대체냉매의 2중관 응축기 열 및 물질전달과 성능평가)

  • 이상무;박병덕;소산번
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.6
    • /
    • pp.468-476
    • /
    • 2002
  • This paper deals with heat and mass transfer characteristics and performance evaluation of a counter flow double-tube condenser for a multi-component refrigerant mixture. The local heat and mass transfer characteristics of ternary zeotropic refrigerant mixtures composed of HFC32/HFC125/HFC134a are evaluated for a counter flow double-tube condenser cooled by water. Then, the local values of vapor quality, thermodynamic states at bulk vapor, vapor-liquid interface and bulk liquid, heat flux and condensation mass flux are obtained. The heat exchange performance for ternary zeotropic refrigerant mixtures composed of HFC32/HFC125/HFC134a on the total pressure drop and the heat transfer characteristics are also compared with those for R404A, R410A, R502, R22, R32, Rl23 and R134a.

Analysis of Heat and Mass Transfer on Helical Absorber (헬리컬 흡수기의 흡수 열물질전달 해석)

  • Gwon, O-Gyeong;Im, Jong-Geuk;Yun, Jeong-In;Kim, Seon-Chang;Yun, Jae-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.11
    • /
    • pp.1428-1436
    • /
    • 2000
  • The absorption of vapor involves simultaneous heat and mass transfer in the vapor/liquid system. In this paper, a numerical study for vapor absorption process into LIBr-H$_2$O solution film flowing over helical absorber has been carried out. Axisymmetric cylindrical coordinate system was adopted to model the helical tube and the transport equations were solved by the finite volume method. The effects of operating conditions, such as the cooling water temperature. the system pressure, the film Reynolds number and the solution inlet concentration have been investigated in view of the absorption mass flux and the total absorption mass flux and the total absorption rate. The results for the temperature and concentration profiles, as well as the local absorption mass flux at the helical absorber are presented. It is shown that solution inlet concentration affected other than operation conditions for a mass flux.

Cooling characteristics of the multichip module using paraffin slurry (파라핀 슬러리를 사용한 다칩모듈의 냉각특성)

  • Jo, Geum-Nam;Choe, Min-Gu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.6
    • /
    • pp.888-898
    • /
    • 1998
  • The present study investigated the effects of the experimental parameters on the cooling characteristics of the multichip module cooled by the indirect liquid cooling method using water and paraffin slurry. The experimental parameters are mass fraction of 2.5 ~ 7.5% for paraffin slurry, heat flux of 10 ~ 40 W/cm$^{2}$ for the simulated VLSI chips and Reynolds numbers of 5,300 ~ 15,900. The apparatus consisted of test section, paraffin slurry maker, pump, constant temperature baths, flowmeter, etc. The test section made of in-line, four-row array of 12 heat sources for simulating 4 * 3 multichip module which was flush mounted on the top wall of a horizontal rectangular channel with the aspect ratio of 0.2. The inlet temperature was 20 deg. C for all experiments. The size of paraffin slurry was constant as 10 ~ 40 .mu.m befor and after the experiment. The chip surface temperatures for paraffin slurry with the mass fraction of 7.5% showed lower by 16 deg. C than those for water when the heat flux is 40 W/cm$^{2}$. The local heat transfer coefficients for the paraffin slurry with the mass fraction of 7.5% were larger by 17 ~ 25% than those for water at the first and the fourth row. The local heat transfer coefficients reached to a row-number-independent, thermally fully developed value approximately after the third row. The local Nusselt numbers at the fourth row for paraffin slurry with the mass fraction of 7.5% were larger by 23 ~ 29% than those for water.

Study on the cooling performance of discrete heat sources using coolants (냉각제들에 따른 불연속 발열체의 냉각성능 연구)

  • 최민구;조금남
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.2
    • /
    • pp.224-235
    • /
    • 1999
  • The present study investigated the effects of the experimental parameters on the cooling characteristics of the multichip module cooled by the indirect liquid cooling method using water, PF-5060, and paraffin slurry. The experimental parameters were coolants including Paraffin slurry with mass fraction of 2.5~7.5%, heat flux of 10~40W/$\textrm{cm}^2$ for the simulated VLSI chips and Reynolds numbers of 3,000~20,000. The size of paraffin slurry was constant as 10~40${\mu}{\textrm}{m}$ before and after the experiment. The chip surface temperatures for paraffin slurry were lower than those for water and PF-5060. The local heat transfer coefficients for the paraffin slurry were larger than those for water and the local heat transfer coefficients reached a row-number-independent and thermally-fully-developed value approximately after the third row. The local Nusselt numbers for paraffin slurry with a mass fraction of 7.5% were larger by 20~38% than those for water. The paraffin slurry with a mass fraction of 5% shelved the best thermal and hydrodynamic characteristics when local heat transfer and pressure drop were considered simultaneously.

  • PDF

Nonlinear variation of performance for a NAFION membrane humidifier with inlet temperature elevation (입구 온도에 따른 나피온 막 가습기 성능의 비선형적 변화)

  • Hwang, J.Y.;Kang, K.;Kang, H.S.;Kim, J.H.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.78.2-78.2
    • /
    • 2010
  • Effect of temperature elevation of inlet air on performance of a membrane humidifier for PEMFC vehicle application was investigated both experimentally and numerically. A shell-and-tube typed gas-to-gas humidifier with Nafion membrane was tested. The experimental result showed that water transfer varies nonlinearly with the temperature elevation. Numerical analysis based on detailed modeling is also conducted on a single tube geometry to explain this nonlinear behavior. The simulation revealed that the local water flux varies nolineary and dramatically along the tube. Analysis is based on competing role of temperature increase and relative humidity decrease, both of which seriously affect water conductivity of the membrane.

  • PDF

Experimental Study and Correlation Development of Critical Heat Flux under Low Pressure and Low Flow Condition

  • Kim, Hong-Chae;Baek, Won-Pil;Kim, Han-Kon;Chang, Soon-Heung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05a
    • /
    • pp.356-361
    • /
    • 1997
  • To investigate parametric effect on CHF and to get CHF data, experimental study has been performed with vertical round tubes under the condition of low pressure and low flow (LPLF). Test sections are made of Inconel-625 tube and have the geometry of 8 and 10 mm in diameter, and 0.5 and 1.0 m in heated length. All experiments have been conducted at the pressure of under 9 bar, the mass flux of under 250 kg/$m^2$ and the inlet subcooling of 350 and 450 kJ/kg, for stable upward flow with water as a coolant. Flow regime analysis has been performed for obtained CHF data with Mishima's flow regime map, which reveals that most of the CHF occur in the annular-mist flow regime. General parametric trends of the collected CHF data are consistent with those of previous studies. However, for the pressure effect on CHF, two different are observed; For relatively high mass flux, CHF increases with pressure and far lower mass flux, CHF decrease with pressure. Using modern data regression tool, ACE algorithm, two new CHF correlations for LPLF condition are developed based on local condition and inlet condition, respectively. The developed CHF correlations show better prediction accuracy compared with existing CHF prediction methods.

  • PDF

Numerical Simulation for Net-water Flux of the Cross-sectional area in the Nakdong River Estuary (낙동강 하구역내 사주간의 단면유량플럭스 수치모의)

  • Yoon, Han-Sam;Lee, In-Cheol;Ryu, Cheong-Ro
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.8 no.4
    • /
    • pp.186-192
    • /
    • 2005
  • We investigated the deposition characteristics and mass transport flux estimation of the Nakdong estuary, Korea. To understand the effects of the tidal current circulation that influences estuary terrain changes, we used a 2D numerical model to map seawater circulation under three different situations, with the level of river flow being set as none or flood. The net-water flux of the cross-sectional area between sandbars (known as dung) was estimated. From our review of previous research, we know that the development of local sandbars shifted from the west to the east side of the estuary after the construction of the Nakdong River dike. Current development is occurring mostly at the Bakhap-dung near Tadea. The seawater circulation pattern over this large-scale area of tidal na is brings changes related to the quantity of the outflow from the Nakdong River. Based on the calculated results for the net-water flux of the cross-sectional area, we see very strong accumulation in local waters around Jangjiado, Bakhapdung, and Tadae under flood river flow conditions, but accumulation in local waters around Jinudo under the other states of flow. Consequently, in the Nakdong estuary, the main sensitive regions that are affected by changes in the flow of river discharge are the local waters around Jangiado, Bakhapdung, Tadae, and Jinudo.

  • PDF