• Title/Summary/Keyword: Local Retransmission

Search Result 29, Processing Time 0.03 seconds

A Study on Local Retransmission Timeout of AT-Snoop Protocol (AT-Snoop 프로토콜의 지역 재전송 시간에 관한 연구)

  • Cho Yong bum;Cho Sung joon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.4B
    • /
    • pp.218-225
    • /
    • 2005
  • Although Snoop protocol can enhance TCP throughput efficiently in a wired-cum-wireless environment, it has a problem in performing local packet retransmissions under a burst error-prone wireless link. AT-Snoop protocol is proposed to cope with this Snoop protocol's problem by adopting adaptive timer. In this paper, TCP throughputs of AT-Snoop protocol have been analyzed with varying wireless link conditions and the ways of setting parameters of AT-Snoop protocol for higher TCP throughput are found out through computer simulations. From the simulation results, AT-Snoop protocol's two parameters, local retransmission threshold value and local retransmission timeout value, are closely related with the fading changing rate. To get higher TCP throughput, local retransmission threshold value and local retransmission timeout value should be set to a little bit larger values than average WSRTT(Wireless Smoothed Round Trip Time) and mean bad period of the wireless link, respectively.

Improving The Performance of Scalable Reliable Multicast over Wired and Wireless Networks using a Retransmission Function (재전송 기능을 이용한 유무선 통합망에서의 Scalable Reliable Multicast 성능 개선)

  • Koh, Wan-Ki
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.4
    • /
    • pp.313-322
    • /
    • 2016
  • This paper presents a method to improve the performance of Scalable Multicast Protocol deployed in wired and wireless network by adding retransmission function on base stations. When using Scalable Multicast Protocol over wireless and wired networks, packet drops on the wireless link produce the initiation of retransmission request packets and the implosion of retransmission packets, which deteriorate the multicast session performance. The efficient reliable multicast mechanism in wireless networks utilizing the retransmission function on the base station is addressed in this paper. We explain the design of a retransmission function which improves the performance of Scalable Multicast Protocol sessions in wireless and wirednetwork. The main idea is to cache Scalable Multicast Protocol packets at the base station and perform local retransmissions across the wireless link. ARENA has been used to simulate and to get performance for reducing signaling overhead and processing delay through the comparison of the proposed function to the Scalable Multicast Protocol.

A Restricted retransimission Mechanism for Error Recovery in a Multicast Group (멀티캐스트 그룹에서의 오류 회복을 위한 재전송 제한 기법)

  • Kim, Eun-Suk;Choe, Jong-Won
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.26 no.8
    • /
    • pp.957-965
    • /
    • 1999
  • 그룹간 공동 작업이나 화상 회의와 같은 그룹 통신의 수요가 늘어나면서 멀티캐스팅을 이용한 효율적인 데이타 전송에 대한 요구가 증가하고 있다. 특히 오디오나 비디오 데이타와는 달리 공동 문서 작업이나 그룹간 문서 전송을 위한 데이타 처리를 위해서는 어느 정도의 시간 손실이 있더라도 신뢰성을 보장할 수 있는 멀티캐스트 프로토콜이 요구된다. 그러나 멀티캐스트 전송에서의 신뢰성을 보장하기 위하여 손실 패킷에 대한 재전송 패킷이 전체 그룹으로 멀티캐스트 되는 것은 네트워크 상에 트래픽을 폭증시키는 요인이 된다. 이에 본 논문에서는 지역 그룹에서의 오류 회복을 위한 재전송 제한 기법을 제안하여 손실 패킷의 재전송 과정에서 발생하는 트래픽의 폭주를 제어하고자 한다. 이것은 재전송 패킷이 중복없이 다중 수신자에게 전송될 수 있도록 하여 그룹 내의 재전송 패킷의 양을 줄이고 필요없는 중복 패킷이 네트워크의 효율을 저하시키는 것을 방지하고자 하는 데 그 목적이 있다. Abstract As the size and the geographic span of communication groups increases, efficient data transmission schemes using Multicast service become more and more essential. Especially, unlike audio and video applications, for some collaborative applications and other data delivery components which require ordered and lossless delivery of data, Reliable Multicast Service is needed to ensure consistent presentation across multiple views. Thus error recovery by retransmission of loss data is provided in order to guarantee the reliability of multicast transmission protocol. However, redundant retransmission packets by multicast may cause traffic implosion on the Internet and it can be aggravated with continuous retransmission.This paper describes a Restricted Retransmission Mechanism as an error recovery method of multicast service in a local group, which can handle traffic implosion in retransmission process. It reduces redundant retransmission packets flowing into a local group and supports reliable multicast transmission. The goal of this mechanism is to reduce retransmission packets and decrease the load for group members and networks.

Improving the Performance of TCP over Wired-Wireless Networks Using the Received Signal Strengths of Mobile Host (이동호스트의 수신신호를 이용한 유무선 혼합망에서의 TCP 성능 향상)

  • Kim, Jin-Hee;Kwon, Kyun-Hee
    • The KIPS Transactions:PartC
    • /
    • v.13C no.5 s.108
    • /
    • pp.635-640
    • /
    • 2006
  • The Snoop in the BS (Base Station) performs a local retransmission over wired-wireless networks to recover packet loss quickly. However, when the MH (Mobile Host) leaves the reception range of the signal, the local retransmission causes performance to degrade. In this paper, we minimize the packet loss and local retransmission caused by the unreachability from BS to MH to improve network performance. To do this, we suggest to add RSS(Received Signal Strengths) flag bit in ACK packet of MH. By using this flag bit, the BS decides whether it retransmits or not to minimize packet loss. The result of the simulation by ns-2 shows a big improvement of performance in the networks.

A Study on Improving TCP Performance in Wireless Network (무선 네트워크에서 TCP성능향상을 위한 연구)

  • Kim, Chang-Hee
    • Journal of Digital Contents Society
    • /
    • v.10 no.2
    • /
    • pp.279-289
    • /
    • 2009
  • As the TCP is the protocol designed for the wired network that packet loss probability is very low, because TCP transmitter takes it for granted that the packet loss by the wireless network characteristics is occurred by the network congestion and lowers the transmitter's transmission rate, the performance is degraded. In this article, we suggest the newly improved algorithm using two parameters, the local retransmission time value and the local retransmission critical value to the BS based on the Snoop. This technique adjusts the base stations local retransmission timer effectively according to the wireless link status to recover the wireless packet loss rapidly. We checked that as a result of the suggested algorithm through various simulations, A-Snoop protocol improve more the wireless TCP transmission rate by recovering the packet loss effectively in the wireless link that the continuous packet loss occur than the Snoop protocol.

  • PDF

Design and Performance Evaluation of Cross-layer ARQ Mechanism Using Local Re-transmission Agent in Next Generation Mobile Networks (차세대 이동 망에서 지역 재전송 에이전트를 이용한 Cross-layer ARQ 메커니즘 설계 및 성능 평가)

  • So, Sang-Gp;Park, Man-Kyu;Lee, Jae-Yong;Kim, Byung-Chul;Kim, Dae-Young
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.8
    • /
    • pp.50-58
    • /
    • 2009
  • Fourth generation mobile communication network have the technology of extensive form include basic service technology and it has been developed from the radio access technology and network topology. Not only fourth generation mobile communication network have basically done new highspeed radio access technology which is suitable to high and low speed environment of transfer, but also it is possible that they have been made for freely vertical handover. ETRI also has made fourth generation mobile communication network which is WiNGS(Wireless Initiative for Next Generation Service) satisfied that demand. This paper is made by lossless handover method through the local retransmission ARQ agent that is one of the main technology of fourth generation mobile communication network. Lossless handover method through local retransmission ARQ agent has been basically made by WiNGS and it was better than original local retransmission of layer by simulation.

Retransmission Scheme to Guarantee QoS for Multimedia Receivers in Multicast Environments (멀티캐스트 환경에서 멀티미디어 수신노드의 QoS를 보장하는 재전송 기법)

  • Kim, Ki-Young
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.7
    • /
    • pp.835-843
    • /
    • 2006
  • Multicast can send one copy of each packet to each member of the multicast group. Network resource is utilized effectively, consequently, it is suitable for one-to-many environments. reliability and flow control, however, are not supported basically, it is not suitable or transmission of multimedia data which have a time restriction. In this paper, we present a network model and a multicast retransmission scheme The proposed scheme remove ack-explosion from sender through local recovery and performs local retransmission when time restriction is satisfied on receiver by considering the state of receiver's buffer. Mathematical analysis and simulation are conducted to prove performance of the proposed scheme. The results are shown that the proposed scheme consumes a lower network bandwidth than the existing network model and guarantees QoS of receivers.

  • PDF

Improving TCP Performance for Downward Vertical Handover (하향식 수직적 핸드오버를 위한 무선 TCP 성능 향상 기법과 성능 분석)

  • Kim, Ho-Jin;Lee, Su-Kyoung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.10B
    • /
    • pp.638-643
    • /
    • 2007
  • Interconnecting wireless local area networks (WLANs) with third generation (3G) cellular networks has become an issue of great interest. However, a Vertical Handover (VHO) causes an abrupt change in link bandwidth. Due to such a change, TCP triggers unnecessary fast retransmission during a Downward VHO (DVHO) from a cellular network to a WLAN, causing throughput degradation. Thus, we propose a new reordering mechanism for DVHO that suppresses unnecessary retransmission due to the spurious duplicate acknowledgments. We analytically investigate the throughput of TCP in the literature and our proposed scheme. Through the numerical and simulation results, it is shown that our proposed TCP achieves better performance in terms of throughput, compared with Nodupack with SACK.

Wavelength Division Multiple Access Protocols for High-Speed Optical Fiber Local Area Networks (고속 광 지역망을 위한 파장 분할 다중 접근 프로토콜)

  • 조원홍;이준호;이상배
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.4
    • /
    • pp.21-29
    • /
    • 1994
  • Three protocols based on the slotted Aloha technique are proposed for very high-speed optical fiber local area networks using wavelength division multiplexing (WDM) passive star topology and the throughputs and delays are derived. For getting a high probability in successful transmission of control packets determining the transmission of a data packet, we adopt control mini slot groups in these protocols. The retransmission probability is also considered in analysis. Both throughput and delay of three protocols are compared and analyzed by varying the number of control solt groups, the retransmission probability the length of a data packet and the number of channels. The numerical analysis shows that the proposed protocols adopted the control slot groups give the increase of throughput and the decrease of delay.

  • PDF

New Retransmission Method using the minimum MPDU starting Spacing in Two-level Aggregation of IEEE 802.11n (IEEE 802.11n의 2-레벨 집적 방식에서 최소 MPDU 시작 간격을 이용하는 새로운 재전송 방법)

  • Shin, In Cheol;Kim, Dong-Hoi
    • Journal of Broadcast Engineering
    • /
    • v.20 no.2
    • /
    • pp.300-309
    • /
    • 2015
  • In IEEE 802.11n WLANs(Wireless Local Area Networks), to support high throughput, MAC(Media Access Control) layer adopts A-MSDU(Aggregate-MAC Service Data Unit) and A-MPDU(Aggregate-MAC Protocol Data Unit). Generally, as the A-MPDU uses a selective retransmission capability, A-MPDU provides higher throughput than A-MSDU. However, although A-MPDU uses the selective re-transmission capability, if the size of MPDU within A-MPDU is smaller than the size of minimum MPDU starting spacing, A-MPDU can reduce throughput because of the overhead of retransmission owing to the addition of delimiter, that is a dummy MPDU. Therefore, to overcome the above problem, two-level Aggregation method, where the small MPDU within A-MPDU is replaced by not delimiter but A-MSDU, has been introduced. In the two-level Aggregation method, the existing re-transmission scheme retransmits only A-MPDU, but if the size of retransmission data is smaller than the size of the minimum MPDU starting spacing, the proposed retransmission scheme retransmits the aggregated retransmission data and MSDUs. Therefore, we know that the proposed retransmission scheme have better throughput that the existing retransmission scheme.