• Title/Summary/Keyword: Local Projection

Search Result 156, Processing Time 0.027 seconds

Recovering Surface Orientation from Texture Gradient by Monoculer View (단안시에 의한 무늬그래디언트로부터 연 방향 복구)

  • 정성칠;최연성;최종수
    • Proceedings of the Korean Institute of Communication Sciences Conference
    • /
    • 1987.04a
    • /
    • pp.22-26
    • /
    • 1987
  • Texture provides an important acurce of information about the threedicensfornarry information of visible surface particulary for stationary conccular views. To recover three dicmensinoary information, the distorging effects of pro jection must be distinguished from properties of the texture on which the distrortion acts. In this paper, we show an approximated maximum likelihood estimation method by which we find surface oriemtation of the visible surface in gaussian sphere using local analysis of the texture, In addition assuming that an orthographic projection and a circle is an image formation system and a texel(texture element)respectively we derive the surface orientation from the distribution of variation by means of orthographic pro jemction of a tangent directon which exstis regulary in the are length of a circle we present the orientation parameters of textured surface with saint and tilt and also the surface normal of the resvlted surface orimentation as needle map. This algorithm was applied to geograghic contour and synthetic textures.

  • PDF

Adaptive motion estimation based on spatio-temporal correlations (시공간 상관성을 이용한 적응적 움직임 추정)

  • 김동욱;김진태;최종수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.5
    • /
    • pp.1109-1122
    • /
    • 1996
  • Generally, moving images contain the various components in motions, which reange from a static object and background to a fast moving object. To extract the accurate motion parameters, we must consider the various motions. That requires a wide search egion in motion estimation. The wide search, however, causes a high computational complexity. If we have a few knowledge about the motion direction and magnitude before motion estimation, we can determine the search location and search window size using the already-known information about the motion. In this paper, we present a local adaptive motion estimation approach that predicts a block motion based on spatio-temporal neighborhood blocks and adaptively defines the search location and search window size. This paper presents a technique for reducing computational complexity, while having high accuracy in motion estimation. The proposed algorithm is introduced the forward and backward projection techniques. The search windeo size for a block is adaptively determined by previous motion vectors and prediction errors. Simulations show significant improvements in the qualities of the motion compensated images and in the reduction of the computational complexity.

  • PDF

Self-localization of Mobile Robots by the Detection and Recognition of Landmarks (인공표식과 자연표식을 결합한 강인한 자기위치추정)

  • 권인소;장기정;김성호;이왕헌
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.306-311
    • /
    • 2003
  • This paper presents a novel localization paradigm for mobile robots based on artificial and natural landmarks. A model-based object recognition method detects natural landmarks and conducts the global and topological localization. In addition, a metric localization method using artificial landmarks is fused to complement the deficiency of topology map and guide to action behavior. The recognition algorithm uses a modified local Zernike moments and a probabilistic voting method for the robust detection of objects in cluttered indoor environments. An artificial landmark is designed to have a three-dimensional multi-colored structure and the projection distortion of the structure encodes the distance and viewing direction of the robot. We demonstrate the feasibility of the proposed system through real world experiments using a mobile robot, KASIRI-III.

  • PDF

Stability Evaluation of Progressive Failure Slope in Biotite Granite Area of Andong (안동 흑운모화강암 지역의 진행성 파괴사면 안정성 평가)

  • Baek, Seung-Cheol
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.2
    • /
    • pp.103-110
    • /
    • 2000
  • This paper deal with the stability evaluation and suggestion of progressive failure slope in biotite granite area of Andong. Based on geological site investigation and field test, stability analysis of slope was performed in conjunction with limit equilibrium methods and stereographic projection. Additionally, initial design and construction procedure was critically evaluated. Series of the slope stability analysis reveals the detection of local wedge and plane failure under the current slope condition. It is additionally appeared that a certain synthetic behavior of circle and plane failure exists on the right spot where the overall failure's going in progress. In order to construct more stable slope based on the suitability for the real state of the slope circumstances, this study issues a solution to eliminate the primary factors which cause the instability, by means of the grade of weathering and RMR classification of rock mass.

  • PDF

A Computer Aided Automatic Verification System for Mechanical Drawings Drawn with CAD System (CAD 시스템에 의하여 작성된 기계도면의 자동검증시스템에 관한 연구)

  • Lee, S.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.8
    • /
    • pp.60-71
    • /
    • 1996
  • Mostof existing CAD systems do not provide the advanced function for systematic checking of design and drafting errors in mechanical drawings. We have reported a computer aided drawing check system to single plane projection drawings made by a CAD system. This paper describes a checking method of dimensioning errors in mechanical drawings. The checking items are deficiency and redundancy of dimensions, input-errors in dimension figures and symbols, etc. Checking for deficiency and redundancy of global dimensions has been performed applying Graph Theory. This system has been applied to several examples and we have confirmed the feasibility of this checking method.

  • PDF

Estimation of Real Boundary with Subpixel Accuracy in Digital Imagery (디지털 영상에서 부화소 정밀도의 실제 경계 추정)

  • Kim, Tae-Hyeon;Moon, Young-Shik;Han, Chang-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.8
    • /
    • pp.16-22
    • /
    • 1999
  • In this paper, an efficient algorithm for estimating real edge locations to subpixel values is described. Digital images are acquired by projection into image plane and sampling process. However, most of real edge locations are lost in this process, which causes low measurement accuracy. For accurate measurement, we propose an algorithm which estimates the real boundary between two adjacent pixels in digital imagery, with subpixel accuracy. We first define 1D edge operator based on the moment invariant. To extend it to 2D data, the edge orientation of each pixel is estimated by the LSE(Least Squares Error)line/circle fitting of a set of pixels around edge boundary. Then, using the pixels along the line perpendicular to the estimated edge orientation the real boundary is calculated with subpixel accuracy. Experimental results using real images show that the proposed method is robust in local noise, while maintaining low measurement error.

  • PDF

THE CONSTRAINED ITERATIVE IMAGE RESTORATION ALGORITHM USING NEW REGULARIZATION OPERATORS

  • Lee, Sang-Hwa;Lee, Choong-Woong
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1997.06a
    • /
    • pp.107-112
    • /
    • 1997
  • This paper proposes the regularized constrained iterative image restoration algorithms which apply new space-adaptive methods to degraded image signals, and analyzes the convergence condition of the proposed algorithm. First, we introduce space-adaptive regularization operators which change according to edge characteristics of local images in order to effectively prevent the restored edges and boundaries from reblurring. And, pseudo projection operator is used to reduce the ringing artifact which results from extensive amplification of noise components in the restoration process. The analysed algorithm is stable convergent to the fixed point. According to the experimental results for various signal-to-noise ratios(SNR) and blur models, the proposed algorithms other methods and is robust to noise effects and edge reblurring by regularization especially.

  • PDF

Effective Sonar Grid map Matching for Topological Place Recognition (위상학적 공간 인식을 위한 효과적인 초음파 격자 지도 매칭 기법 개발)

  • Choi, Jin-Woo;Choi, Min-Yong;Chung, Wan-Kyun
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.3
    • /
    • pp.247-254
    • /
    • 2011
  • This paper presents a method of sonar grid map matching for topological place recognition. The proposed method provides an effective rotation invariant grid map matching method. A template grid map is firstly extracted for reliable grid map matching by filtering noisy data in local grid map. Using the template grid map, the rotation invariant grid map matching is performed by Ring Projection Transformation. The rotation invariant grid map matching selects candidate locations which are regarded as representative point for each node. Then, the topological place recognition is achieved by calculating matching probability based on the candidate location. The matching probability is acquired by using both rotation invariant grid map matching and the matching of distance and angle vectors. The proposed method can provide a successful matching even under rotation changes between grid maps. Moreover, the matching probability gives a reliable result for topological place recognition. The performance of the proposed method is verified by experimental results in a real home environment.

A Study on Pattern Recognition with Self-Organized Supervised Learning (자기조직화 교사 학습에 의한 패턴인식에 관한 연구)

  • Park, Chan-Ho
    • The Journal of Information Technology
    • /
    • v.5 no.2
    • /
    • pp.17-26
    • /
    • 2002
  • On this paper, we propose SOSL(Self-Organized Supervised Learning) and it's architecture SOSL is hybrid type neural network. It consists of several CBP (Component Back Propagation) neural networks, and a modified PCA neural networks. CBP neural networks perform supervised learning procedure in parallel to clustered and complex input patterns. Modified PCA networks perform it's learning in order to transform dimensions of original input patterns to lower dimensions by clustering and local projection. Proposed SOSL can effectively apply to neural network learning with large input patterns results in huge networks size.

  • PDF

Lunar ascent and orbit injection via locally-flat near-optimal guidance and nonlinear reduced-attitude control

  • Mauro, Pontani
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.5
    • /
    • pp.433-447
    • /
    • 2022
  • This work deals with an explicit guidance and control architecture for autonomous lunar ascent and orbit injection, i.e., the locally-flat near-optimal guidance, accompanied by nonlinear reduced-attitude control. This is a new explicit guidance scheme, based on the local projection of the position and velocity variables, in conjunction with the real-time solution of the associated minimum-time problem. A recently-introduced quaternion-based reduced-attitude control algorithm, which enjoys quasi-global stability properties, is employed to drive the longitudinal axis of the ascent vehicle toward the desired direction. Actuation, based on thrust vectoring, is modeled as well. Extensive Monte Carlo simulations prove the effectiveness of the guidance, control, and actuation architecture proposed in this study for precise lunar orbit insertion, in the presence of nonnominal flight conditions.