• Title/Summary/Keyword: Local Heating

Search Result 360, Processing Time 0.029 seconds

3-D CFD Analysis of the CANDU-6 Moderator Circulation Under Nnormal Operating Conditions

  • Yoon, Churl;Rhee, Bo-Wook;Min, Byung-Joo
    • Nuclear Engineering and Technology
    • /
    • v.36 no.6
    • /
    • pp.559-570
    • /
    • 2004
  • A computational fluid dynamics model for predicting moderator circulation inside the Canada deuterium uranium (CANDU) reactor vessel has been developed to estimate the local subcooling of the moderator in the vicinity of the calandria tubes. The buoyancy effect induced by the internal heating is accounted for by the Boussinesq approximation. The standard $k-{\varepsilon}$ turbulence model with logarithmic wall treatment is applied to predict the turbulent jet flows from the inlet nozzles. The matrix of the calandria tubes in the core region is simplified to a porous media in which the anisotropic hydraulic impedance is modeled using an empirical correlation of pressure loss. The governing equations are solved by DFX-4.4, a commercial CFD code developed by AEA technology. The resultant flow patterns of the constant-z slices containing the inlet nozzles and the outlet port are "mined-type", as observed in the former 2-dimensional experimental investigations. With 103% full power for conservatism, the maximum temperature of the moderator is $82.9^{\circ}C$ at the top of the core region. Considering the hydrostatic pressure change, the minimum subcooling is $24.8^{\circ}C$.

Climate Change Impacts on Optimum Ripening Periods of Rice Plant and Its Countermeasure in Rice Cultivation (기후변화에 따른 벼 적정 등숙기간의 변동과 대책)

  • 윤성호;이정택
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.3 no.1
    • /
    • pp.55-70
    • /
    • 2001
  • It was unusual crop weather for 1998 and 1999 compared with normal in Korea. The consecutive days of the optimum ripening period for rice plant that had daily mean temperature 21~23$^{\circ}C$ for 40 days after flowering, increased with long anomalies in 1998~99. The air temperature during ripening period was much higher than the optimum temperature and lower sunshine hour than norm in the local adaptability tests of newly developed rice lines during those years. In response of rice cultivation to warming and cloudy weather during crop season, the yield shall be decreased. Most scientists agree that the rate of heating is accelerating and temperature change could become increasingly disruptive. Weather patterns should also become more erratic. Agrometeorologists could be analyzed yearly variations of temperature, sunshine hour and rainfall pattern focused on transient agroclimate change for last a decade. Rice agronomists could be established taking advantage of real time agricultural meteorology information system for fertilization, irrigation, pest control and harvest. Also they could be analyzed the characteristics of flowering response of the recommended and newly bred rice cultivars for suitable cropping plan such as cultural patterns and sowing or transplanting date. Rice breeders should be deeply considered introducing the characteristics of basic vegetative type of flowering response like Togil rices as prospective rice cultivars corresponding to global warming because of the rices needed higher temperature at ripening stage than japonica rices, photoperiod-sensitive and thermo-sensitive ecotypes.

  • PDF

Synthesis and Structural Properties of $VO_2$ Thin Films

  • Jin, Zhenlan;Park, Changin;Hwang, Inhui;Han, S.W.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.190.2-190.2
    • /
    • 2013
  • Vanadium dioxide ($VO_2$) has been widely attracted for academic research and industrial applications due to its metal-insulator transition (MIT) temperature close to room temperature. We synthesized VOx film on (0001) sapphire substrate with vanadium target (purity: 99.9%) using DC magnetron sputtering in Ar ambience at a pressure of $10^{-3}$ Torr at $400{\sim}700^{\circ}C$. The VOx film subsequently was annealed at difference temperatures in ambience of Ar and $O_2$ gas mixture at $60{\sim}800^{\circ}C$. The structural properties of the films were investigated using scanning electron microscopic (SEM), x-ray diffraction (XRD) and x-ray absorption fine structure (XAFS) measurements. SEM reveal that small grains formed on the substrates with a roughness surface. XRD shows oriented $VO_2$(020) crystals was deposited on the $Al_2O_3$(006) substrate. From I-V measurements, the electric resistance near its MIT temperature were dramatically changed by ${\sim}10^4$ during heating and cooling the films. We will also discuss the temperature-dependent local structural changes around vanadium atoms using XAFS measurements.

  • PDF

Analysis on Particle Deposition on a Heated Rotating Disk (가열되는 회전원판으로의 입자 침착 해석)

  • Yu, Gyeong-Hun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.2
    • /
    • pp.245-252
    • /
    • 2002
  • Numerical analysis was conducted to characterize particle deposition on a horizontal rotating disk with thermophorectic effect under laminar flow field. The particle transport mechanisms considered were convection, Brownian diffusion, gravitational settling and thermophoresis. The averaged particle deposition velocities and their radial distributions for the upper surface of the disk were calculated from the particle concentration equation in a Eulerian frame of reference for rotating speeds of 0∼1000rpm and temperature differences of 0∼5K. It was observed from the numerical results that the rotation effect of disk increased the averaged deposition velocities, and enhanced the uniformity of local deposition velocities on the upper surface compared with those of the disk at rest. It was also shown that the heating of the disk with ΔT=5K decreased deposition velocity over a fairly broad range of particle sizes. Finally, an approximate deposition velocity model for the rotating disk was suggested. The comparison of the present numerical results with the results of the approximate model and the available experimental results showed relatively good agreement between them.

Numerical Analysis of Electromagnetic and Temperature Fields Induced by Femtosecond Laser Irradiation of Silver Nanowires (은 나노선 펨토초 레이저 조사에 의해 유도되는 전자기장 및 온도장 수치 해석)

  • Ha, Jeonghong;Kim, Dongsik
    • Laser Solutions
    • /
    • v.18 no.1
    • /
    • pp.12-17
    • /
    • 2015
  • This work performed numerical analysis of electromagnetic field and thermal phenomena occurring in femtosecond laser irradiation of silver nanowires. The local electric field enhancement was computed to calculate the optical energy dissipation as a Joule heating source and the thermal transport was analysed based on the two-temperature model (TTM). Electron temperature increased up to 1000K after 50fs and its spatial distribution became homogeneous after 80fs at the fluence of 100mJ/cm2. The result of this work is expected to contribute to revealing the photothermal effects on silver nanowires induced by femtosecond laser irradiation. Although the highest increase of lattice temperature was substantially below the melting point of silver, the experimental results showed resolidification and fragmentation of the silver nanowire into nanoparticles, which cannot be explained by the photothermal mechanism. Further studies are thus needed to clarify the physical mechanisms.

Laser Micro-Joining and Soldering (레이저 마이크로 접합 및 솔더링)

  • Hwang, Seung Jun;Kang, Hye Jun;Kim, Jeng O;Jung, Jae Pil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.3
    • /
    • pp.7-13
    • /
    • 2019
  • In this paper, the principles, types and characteristics of the laser and laser soldering are introduced. Laser soldering methods for electronics, metals, semiconductors are also presented. Laser soldering is a non-contact process that transfers energy to solder joint by a precisely controlled beam. Demands for laser soldering are increasing due to bonding for complex circuits and local heating in micro joint. Laser absorption ratio depends on materials, and each material has different absorption or reflectivity of the laser beam, which requires fine adjustment of the laser beam. Laser types and operating conditions are also important factors for laser soldering performance. In this paper, the performance of Nd:YAG laser soldering is compared to the hot blast reflow. Meanwhile, a diode laser gives different wavelength and smaller parts with high performance, but it has various reliability issues such as heat loss, high power, and cooling technology. These issues need to be improved in the future, and further studies for laser micro-joining and soldering are required.

Local Enhancement Mechanism of Cold Surges over the Korean Peninsula (한반도 한파의 지역적 강화 메커니즘)

  • Lee, Hye-Young;Kim, Joowan;Park, In-Gyu;Kang, Hyungyu;Ryu, Hosun
    • Atmosphere
    • /
    • v.28 no.4
    • /
    • pp.383-392
    • /
    • 2018
  • This study investigates synoptic characteristics of cold surges over South Korea during winter season (December-February). A total of 63 cold events are selected by quantile regression analysis using daily mean temperature observations from 11 KMA stations for 38 years (1979/80-2016/17). Large-scale pressure pattern during the cold surges is well characterized by high over Siberia and low over Aleutian regions, which elucidates cold advection over the Korean peninsula. However, the large-scale pattern cannot successfully explain the observed sudden decrease of temperature during the cold surges. Composite analyses reveal that a synoptic-scale cyclone developing over the northern Japan is a key feature that significantly contribute to the enhancement of cold advection by increasing pressure gradient over the Korean peninsula. Enhanced sensible and latent heat fluxes are observed over the southern ocean of Korea and Japan during the cold surges due to temperature and humidity differences between the near surface and the lower atmosphere over the ocean. The evaporated water vapor transported toward the center of the surface cyclone and condenses in the lower-to-middle troposphere. The released energy likely promotes the development of the surface cyclone by inducing positive PV near the surface of the heating region.

A Study on Architectural Form of Waste to Energy Plants in accordance with Law - Focus on Seoul and Tokyo - (법규에 따른 자원회수시설의 건축적 형태에 관한 연구 - 서울과 도쿄를 중심으로 -)

  • Jung, Seung-won;Lee, Kang-jun
    • Journal of Urban Science
    • /
    • v.11 no.1
    • /
    • pp.29-35
    • /
    • 2022
  • Waste to Energy Plant were recognized as hateful facilities, and there were many conflicts in the location due to social problems such as the NIMBY phenomenon due to problems such as damage to property in the surrounding area, odor, and image loss. Problems such as air pollution and odor are solved by the development of advanced prevention facilities such as electric dust collectors, wet cleaning systems, semi-dry reaction towers, bag filters, and catalyst towers (SCR: Selective Catalytic Reduction), and air recycling facilities in waste storage tanks. However, it is being avoided because of the perception that it is an incinerator. To resolve these conflicts, the government installs and operates resident convenience facilities to compensate residents near resource recovery facilities, provides green space and improves the environment, and supports heating expenses in accordance with the 「Waste Treatment Facility Support Act」. The purpose of this study is to derive implications through the analysis of domestic and overseas case studies for resident convenience facilities and environment improvement for the promotion of local communities in resource recovery facilities and use them as basic data for community promotion and environmental improvement when installing resource recovery facilities in the future.

Hydrogen Aging During Hole Expanding Tests of Galvanized High Strength Steels Investigated Using a Novel Thermal Desorption Analyzer for Small Samples

  • Melodie Mandy;Maiwenn Larnicol;Louis Bordignon;Anis Aouafi;Mihaela Teaca;Thierry Sturel
    • Corrosion Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.145-153
    • /
    • 2024
  • In the automotive industry, the hole expanding test is widely used to assess the formability of punched holes in sheets. This test provides a good representation of formability within the framework defined by the ISO 16630 standard. During hole expanding tests on galvanized high strength steels, a negative effect was observed when there was a delay between hole punching and expansion, as compared to performing both operations directly. This effect is believed to be caused by hydrogen aging, which occurs when hydrogen diffuses towards highly-work hardened edges. Therefore, the aim of this study is to demonstrate the migration of hydrogen towards work-hardened edges in high strength Zn-coated steel sheets using a novel Thermal Desorption Analyzer (TDA) designed for small samples. This newly-developed TDA setup allows for the quantification of local diffusible hydrogen near cut edges. With its induction heating and ability to analyze Zn-coated samples while reducing artifacts, this setup offers flexible heat cycles. Through this method, a hydrogen gradient is observed over short distances in shear-cut galvanized steel sheets after a certain period of time following punching.

Heat Transfer Characteristics of Water Jet Impinging on Oblique Surface (경사면(傾斜面)에 충돌(衝突) 하는 수분류(水噴流)의 열전달(熱傳達) 특성(特性)에 관(關)한 연구(硏究))

  • Choi, Guk-Gwang;Na, Gi-Dae;Kim, Yeun-Young;Jeon, Sung-Taek;Lee, Jong-Su
    • Solar Energy
    • /
    • v.13 no.1
    • /
    • pp.1-10
    • /
    • 1993
  • The purpose of this research is to investigate the characteristics of heat transfer in the downward axisymmetric free water jet system impinged on a flat oblique plate which has the uniform heat flux. Experimental conditions considered were Reynolds number, distance between nozzle and Bat plate, inclination angle of heater surface and nozzle exit velocity. Local Nusselt number was subjected to the influence of Re number, Pr number, oblique angle of heating surface and local position of flat plate. In the wall region of downward surface, The secondary peak point of heat transfer appeared at the local point of X/D=-8 from the stagnation point. The stagnation heat transfer rate of this experimental study augments 2.4 times than that of laminar theorical solution. The stagnation nusselt number is function of Reynolds number, nozzle-plate spacing Prandtl number and oblique angle of impinging plate.

  • PDF