• Title/Summary/Keyword: Local Datum

Search Result 26, Processing Time 0.021 seconds

National Datum Transformation Parameters of South Korea Using Weighted Parameter Constraints (가중변수법에 의한 국가좌표계 변환요소의 산정)

  • 이영진
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.15 no.1
    • /
    • pp.29-39
    • /
    • 1997
  • The need of transformation parameters from local geodetic datums to a geocentric coordinate system is becoming more common, with the increasing application of satellite positioning techniques to LIS/GIS survey with cadastral management. In this paper, the national transformation parameters between the Korean geodetic coordinates which is based on the Bessel 1841 ellipsoid and the WGS84 ellipsoid are determined by the least square methods with weighted parameter constraints. Three-dimensional geocentric coordinates are based on GPS observation at 31 stations in the geodetic network, the datum parameters are computed within a standard deviation of less than 1 meter. In South Korea, the national transformation parameters with Bessel geoid-heights are useful for GPS baseline processing and for middle-scale map/database transformation.

  • PDF

Summarized Reviews on Geodetic Coordinate System and Map Projection for Practitioners in Exploration Geophysics (물리탐사 실무자를 위한 측지 좌표계와 지도 투영의 이해)

  • Lee, Seong Kon
    • Geophysics and Geophysical Exploration
    • /
    • v.19 no.4
    • /
    • pp.236-248
    • /
    • 2016
  • In this review, the basic concepts of geodetic coordinate system and map projection are explained to practitioners in exploration geophysicists to enhance the understanding of geographic and projected coordinate system. The fundamental elements such as earth ellipsoid, geoid, geocentric and geodetic latitudes, rhumb line, and great circle are dealt with in detail. The geocentric and geodetic coordinate systems are also summarized neatly, together with coordinate conversion formulae. In addition, the concept and technique for datum transforms between local and world datum are presented, with special emphasis on Korean Geodetic System.

Development of High-Precision Hybrid Geoid Model in Korea (한국의 고정밀 합성지오이드 모델 개발)

  • Lee, Dong-Ha;Yun, Hong-Sik
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.429-431
    • /
    • 2010
  • The hybrid geoid model should be determined by fitting the gravimetric geoid to the geometric geoid which were presented the local vertical level. Therefore, it is necessary to find firstly the optimal scheme for improving the accuracy of gravimetric geoid in order to development the high-precision hybrid geoid model. Through finding the optimal scheme for determining the each part of gravimetric geoid, the most accurate gravimetric geoid model in Korea will be developed when the EIGEN-CG03C model to degree 360, 4-band spherical FFT and RTM reduction methods were used for determining the long, middle and short-frequency part of gravimetric geoid respectively. Finally, we developed the hybrid geoid model around Korea by correcting to gravimetric geoid with the correction term. The correction term is modelled using the difference between GPS/Levelling derived geoidal heights and gravimetric geoidal heights. The stochastic model used in the calculation of correction term is the LSC technique based on second-order Markov covariance function. 503 GPS/Levelling data were used to model the correction term. The degree of LSC fitting to the final hybrid geoid model in Korea was evaluated as 0.001m ${\pm}0.054m$.

  • PDF

Analysis of National Vertical Datum Connection Using Tidal Bench Mark (기본수준점을 이용한 국가수직기준연계 분석 연구)

  • Yoon, Ha Su;Chang, Min Chol;Choi, Yun Soo;Huh, Yong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.3
    • /
    • pp.47-56
    • /
    • 2014
  • Recently, the velocity of sea-level rising has increased due to the global warming and the natural disasters have been occurred many times. Therefore, there are various demands for the integration of vertical reference datums for the ocean and land areas in order to develop a coastal area and prevent a natural disaster. Currently, the vertical datum for the ocean area refers to Local Mean Sea Level(LMSL) and the vertical datum for the land area is based on Incheon Mean Sea Level(IMSL). This study uses 31 points of Tidal Gauge Bench Mark (TGBM) in order to compares and analyzes the geometric heights referring LMSL, IMSL, and the nationally determined geoid surface. 11 points of comparable data are biased more than 10 cm when the geometric heights are compared. It seems to be caused by the inflow of river, the relocation of Tidal Gauge Station, and the topographic change by harbor construction. Also, this study analyze the inclination of sea surface which is the difference between IMSL and LMSL, and it shows the inclination of sea surface increases from the western to southern, and eastern seas. In this study, it is shown that TGBM can be used to integrate vertical datums for the ocean and land areas. In order to integrate the vertical datums, there need more surveying data connecting the ocean to the land area, also cooperation between Korea Hydrographic and Oceanographic Administration and National Geographic Information Institute. It is expected that the integrated vertical datum can be applied to the development of coastal area and the preventative of natural disaster.

Analyses of ellipsoid agreement before and after change due to the introduction of global geodetic reference system (세계측지계 변환에 따른 변환 전후의 타원체 적합성 비교분석)

  • 이석배
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.11a
    • /
    • pp.3-7
    • /
    • 2004
  • Many countries have changed her geodetic reference system from local system to global system because of the global network's necessity. And, also Korean geodetic reference system changed from Tokyo datum to Global geodetic reference system since 2003 as the revision of Survey Law and Korean reference ellipsoid changed from Bessel 1841 ellipsoid to GRS80. The purpose of this paper is evaluation of ellipsoid agreement before and after change due to the introduction of global geodetic reference system in Korea. For the evaluation ellipsoid agreement was analyzed using two Korean geoid model -KOGD2003 and KOBGDM33- on both ellipsoid and area variation caused by change of reference ellipsoid was calculated.

  • PDF

Evaluation of the Net Strength and Accuracy of Korea Precise Primary Geodetic Network (우리나라 정밀 1차 측지망 측량의 성과분석)

  • 최재화;최윤수
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.12 no.1
    • /
    • pp.15-24
    • /
    • 1994
  • In order to produce a consistent set of coordinates of the Korea Precise Primary Geodetic Network (PPGN) based on Suwon Datum, PPGN survey with the use of EDM had carried out between 1975 and 1993. In this study, data arrangement and rigorous adjustment was carried out to assess the net strength and local weakness and to evaluate the accuracy of PPGN. ss, specification for PPGN survey would be systematically studied and revised to new technology and field conditions. And basic data for redefinition of official coordinates. of 1st and 2nd triangulation points is obtained.

  • PDF

An integrated airborne gravity survey of an offshore area near the northern Noto Peninsula, Japan (일본 노토 반도 북쪽 연안의 복합 항공 중력탐사)

  • Komazawa, Masao;Okuma, Shigeo;Segawa, Jiro
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.1
    • /
    • pp.88-95
    • /
    • 2010
  • An airborne gravity survey using a helicopter was carried out in October 2008, offshore along the northern Noto Peninsula, to understand the shallow and regional underground structure. Eleven flight lines, including three tie lines, were arranged at 2 km spacing within 20 km of the coast. The total length of the flight lines was ~700 km. The Bouguer anomalies computed from the airborne gravimetry are consistent with those computed from land and shipborne gravimetry, which gradually decrease in the offshore direction. So, the accuracy of the airborne system is considered to be adequate. A local gravity low in Wajima Bay, which was already known from seafloor gravimetry, was also observed. This suggests that the airborne system has a structural resolution of ~2 km. Reduction of gravity data to a common datum was conducted by compiling the three kinds of gravity data, from airborne, shipborne, and land surveys. In the present study, we have used a solid angle numerical integration method and an iteration method. We finally calculated the gravity anomalies at 300 m above sea level. We needed to add corrections of 2.5 mGals in order to compile the airborne and shipborne gravity data smoothly, so the accuracy of the Bouguer anomaly map is considered to be nearly 2 mGal on the whole, and 5 mGals at worst in limited or local areas.

EXTINCTION AND NON-EXTINCTION OF SOLUTIONS TO A FAST DIFFUSIVE p-LAPLACE EQUATION WITH A NONLOCAL SOURCE

  • Han, Yuzhu;Gao, Wenjie;Li, Haixia
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.1
    • /
    • pp.55-66
    • /
    • 2014
  • In this paper, the authors establish the conditions for the extinction of solutions, in finite time, of the fast diffusive p-Laplace equation $u_t=div({\mid}{\nabla}u{\mid}^{p-2}{\nabla}u)+a{\int}_{\Omega}u^q(y,t)dy$, 1 < p < 2, in a bounded domain ${\Omega}{\subset}R^N$ with $N{\geq}1$. More precisely, it is shown that if q > p-1, any solution vanishes in finite time when the initial datum or the coefficient a or the Lebesgue measure of the domain is small, and if 0 < q < p-1, there exists a solution which is positive in ${\Omega}$ for all t > 0. For the critical case q = p-1, whether the solutions vanish in finite time or not depends crucially on the value of $a{\mu}$, where ${\mu}{\int}_{\Omega}{\phi}^{p-1}(x)dx$ and ${\phi}$ is the unique positive solution of the elliptic problem -div(${\mid}{\nabla}{\phi}{\mid}^{p-2}{\nabla}{\phi}$) = 1, $x{\in}{\Omega}$; ${\phi}(x)$=0, $x{\in}{\partial}{\Omega}$. This is a main difference between equations with local and nonlocal sources.

The Estimation of Design Tide Level over the West Coast of Korea Based on the Kriging Model (크리징 모형을 이용한 서해 설계 기준 조위면의 추정에 관한 연구)

  • Lee, Jae-Hyeong
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.6
    • /
    • pp.611-620
    • /
    • 1997
  • The history of Tidal Bench Mark(TBM) at four major tide observation stations on the the Korea West Coast is reviewed. The data concerned with the local mean sea level(LMSL), the datum level(DL), and TBM is collected and checked. The values of LMSL surveyed by Rural Development Corporation(RDC), Office of Hydrographic Affair(OHA), and Office of Port Affair(OPA) are compared so that their unbiased MSLs at four stations are determined. Kriging model is introduced to estimate the design levels for tide; DL, MSL, and high water spring tide(HWOST). The estimated design level is well fitted with the sample data. The value of the identified drifts increase with the latitude. The estimated semi-variograms ${\gamma}(h)$ show self similarity. The values of the ${\gamma}(h)$ for DL and HWOST are 0.005 times as much as the values of ${\gamma}(h)$ of MSL.

  • PDF

Development of Coordinate Transformation Tool for Existing Digital Map (수치지도 좌표계 변환 도구 개발)

  • 윤홍식;조재명;송동섭;김명호;조흥묵
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.22 no.1
    • /
    • pp.29-36
    • /
    • 2004
  • This study describes the development of coordinate transformation tool for transforming the digital map using newly derived transformation parameters which are determined from the data referred to the local geodetic datum and the geocentric datum (ITRF2000) and the distortion modelling derived from collocation method. We prepared 190 common points and used 107 points to calculate 7 transformation parameters. In order to evaluate an accuracy of coordinate transformation, 83 common points were tested. In this study, we used Molodensky-Badekas model to derive the 7 transformation Parameters. An accuracy of 0.22m was obtained applying 7 Parameters transformation and the distortion modelling together. It shows that the accuracy of coordinate transformation is improved 72% against the result of 7 parameters transformation only. We developed the transformation tool, GDKtrans, which can be transformed the digital map of scales 1/50,000, 1/25,000 and 1/5,000. We also analyzed the digital map of l/5,000 at six urban areas by GPS observations. The result shows less RMSE of about 1.9 m and large disagreement at position and features. Consequently, we suggests that l/5,000 digital map is necessary of whole revision.