• Title/Summary/Keyword: Loading solution

Search Result 872, Processing Time 0.027 seconds

Free-strain solutions for two-dimensional consolidation with sand blankets under multi-ramp loading

  • Zan Li;Songyu Liu;Cuiwei Fu
    • Geomechanics and Engineering
    • /
    • v.35 no.4
    • /
    • pp.385-393
    • /
    • 2023
  • To analyze the consolidation with horizontal sand drains, the plane strain consolidation model under multi-ramp loading is established, and its corresponding analytical solution is derived by using the separation of variables method. The proposed solution is verified by the field measurement data and finite element results. Then, the effects of the loading mode and stress distribution on consolidation and dissipation of pore pressure are investigated. At the same time, the influence of hydraulic conductivity and thickness of sand blankets on soil consolidation are also analyzed. The results show that the loading mode has a significant effect on both the soil consolidation rate and generation-dissipation process of pore water pressure. In contrast, the influence of stress distribution on pore pressure dissipation is obvious, while its influence on soil consolidation rate is negligible. To guarantee the fully drained condition of the sand blanket, the ratio of hydraulic conductivity of the sand blanket to that of clay layer kd/kv should range from 1.0×104 to 1.0×106 with soil width varying from 100 m to 1000 m. A larger soil width correspondingly needs a greater value of kd/kv to make sure that the pore water can flow through the sand blanket smoothly with little resistance. When the soil width is relatively small (e.g., less than 100 m), the effect of thickness of the sand blanket on soil consolidation is insignificant. And its influence appears obvious gradually with the increase of the soil width.

Dynamic Instability Analysis of Euler Column under Impact Loading (충격하중을 받는 Euler기둥의 동적좌굴 해석)

  • 김형열
    • Computational Structural Engineering
    • /
    • v.9 no.3
    • /
    • pp.187-197
    • /
    • 1996
  • An explicit direct time integration method based solution algorithm is presented to predict dynamic buckling response of Euler column. On the basis of large deflection beam theory, a plane frame finite element is formulated and implemented into the solution algorithm. The element formulation takes into account geometrical nonlinearity and overall buckling of steel structural frames. The solution algorithm employs the central difference method. Using the computer program developed by the author, dynamic instability behavior of Euler column under impact loading is investigated by considering the time variation of load, load magnitude, and load duration. The free vibration of Euler column caused by a short duration impact load is also studied. The validity and efficiency of the present formulation and solution algorithm are verified through illustrative numerical examples.

  • PDF

Evaluation of internal adaptation of dental adhesive restorations using micro-CT

  • Kwon, Oh-Hyun;Park, Sung-Ho
    • Restorative Dentistry and Endodontics
    • /
    • v.37 no.1
    • /
    • pp.41-49
    • /
    • 2012
  • Objectives: The internal adaptation of composite restorations with or without resin modified glass ionomer cement (RMGIC) was analyzed non-destructively using Microcomputed tomography (micro-CT). Materials and Methods: Thirty intact human teeth were used. The specimens were divided into 3 groups. In the control group, the cavities were etched with 10% phosphoric acid for 15 sec. Composite resin was filled into the cavity without adhesive. In group 1, light cured glass ionomer cement (GIC, Fuji II LC, GC) was applied as a base. The cavities were then etched, bonded, light cured and filled with composites. In group 2, the cavities were then etched, bonded, light cured and filled with composites without base application. They were immersed in a 25% silver nitrate solution. Micro-CT was performed before and after mechanical loading. One-way ANOVA with Duncan analysis was used to compare the internal adaptation between the groups before or after loading. A paired t-test was used to compare internal adaptation before and after mechanical loading. All statistical inferences were made within the 95% confidence interval. Results: The silver nitrate solution successfully penetrated into the dentinal tubules from the pulp spaces, and infiltrated into the gap between restoration and pulpal floor. Group 2 showed a lower adaptation than the control group and group 1 (p < 0.05). There was no significant difference between the control group and group 1. For all groups, there was a significant difference between before and after mechanical loading (p < 0.05). Conclusions: The internal adaptation before and after loading was better when composites were bonded to tooth using adhesive than composites based with RMGIC.

Chemical Assessment of Heavy Metal Contamination in Soil

  • Yang, Jae-E.;Choi, Moon-Heon
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1997.05a
    • /
    • pp.8-11
    • /
    • 1997
  • Current methods of evaluating soil contamination by heavy metals rely on analyzing samples for total contents of metals or quantities recovered in various chemical extracting solutions. Results from these approaches provide only an index for evaluation because these methodologies yield values not directly related to bioavailability of soil-borne metals. In addition, even though concentrations of metals may be less than those required to cause toxic effects to biota, they may cause substantial effects on soil chemical parameters that determine soil quality and sustainable productivity. The objective of this research was to characterize effects of Cu or Cd additions on soil solution chemistry of soil quality indices, such as pH, EC, nutrient cation distribution and quantity/intensity relations (buffer capacity). Metals were added at rates ranging from 0 to 400 mg/kg of soil. Soil solution was sequentially extracted from saturated pastes using vacuum. Concentrations of Cu or Cd remaining in soil solutions were very low as compared to those added to the soils, warranting that most of the added metals were recovered as nonavailable (strongly adsorbed) fractions. Adsorption of the added metals released cations into soil solution causing increases of soluble cation contents and thus ionic strength of soil solution. At metal additions of 200~400 mg/kg, EC of soil solution increased to as much as 2~4 dS/m; salinity levels considered high enough to cause detrimental effects on plant production. More divalent cations (Ca+Mg) than monovalent cations (K+Na) were exchanged by Cu or Cd adsorption. The loss of exchangeable nutrient cations decreased long-term nutrient supplying capacity or each soil. At 100 mg/kg or metal loading, the buffering capacity was decreased by 60%. pH of soil solution decreased linearly with increasing metal loading rates, with a decrement of up to 1.3 units at 400 mg Cu/kg addition. Influences of Cu on each of these soil quality parameters were consistently greater than those of Cd. These effects were of a detrimental nature and large enough in most cases to significantly impact soil productivity. It is clear that new protocols are needed for evaluating potential effects of heavy metal loading of soils.

  • PDF

Selective Adsorption of Si(IV) onto Hydrotalcite from Alkali Leaching Solution of Black Dross (블랙드로스 알칼리 침출용액으로부터 hydrotalcite에 의한 규소(IV)의 선택적 흡착)

  • Song, Si Jeong;Lee, Man Seung
    • Resources Recycling
    • /
    • v.28 no.2
    • /
    • pp.54-61
    • /
    • 2019
  • In order to recover pure alumina from black dross, leaching of mechanically activated black dross with NaOH solution resulted in an aluminate solution containing a small amount of Si(IV). Selective adsorption of Si(IV) onto hydrotalcite was investigated from 5 M NaOH solution where the concentration of Al(III) and Si(IV) was 13000 and 150 mg/L, respectively. Only Si(IV) was selectively loaded onto hydrotalcite, while Al(III) remained in the solution. Effect of the calcination treatment of hydrotalcite and concentration of calcined hydrotalcite and NaOH on the loading of Si(IV) was investigated. Although the loading percentage of Si(IV) was low from 5 M NaOH solution, most of the Si(IV) was removed by adjusting the concentration of NaOH by 48 times dilution with water when the concentration of calcined hydrotalcite was higher than 4.5 g/L. The loading of Si(IV) onto calcined hydrotalcite followed Freundlich adsorption isotherm.

A GA-based Heuristic for the Interrelated Container Selection Loading Problems

  • Techanitisawad, Anulark;Tangwiwatwong, Paisitt
    • Industrial Engineering and Management Systems
    • /
    • v.3 no.1
    • /
    • pp.22-37
    • /
    • 2004
  • An integrated heuristic approach based on genetic algorithms (GAs) is proposed for solving the container selection and loading problems. The GA for container selection solves a two-dimensional knapsack problem, determining a set of containers to minimize the transportation or shipment cost. The GA for container loading solves for the weighted coefficients in the evaluation functions that are applied in selecting loading positions and boxes to be loaded, so that the volume utilization is maximized. Several loading constraints such as box orientation, stack priority, stack stability, and container stability are also incorporated into the algorithm. In general, our computational results based on randomly generated data and problems from the literature suggest that the proposed heuristic provides a good solution in a reasonable amount of computational time.

Vibration Analysis of Water-loaded Cylindrical Array Structures (원통형 배열 구조물의 접수진동 해석)

  • Shin, Chang-Joo;Hong, Chin-Suk;Jeong, Weui-Bong;Seo, Hee-Seon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.175-182
    • /
    • 2009
  • This paper summarizes a solution procedure for a large cylindrical structure mounted underneath a ship as a sonar. Vibration analysis of the water loaded structure is required to enhance the structural reliability as well as acoustic performance of the sonar. It is, however, often very difficult to solve such structures since they have many DOFs, considering the frequency of interest and the water-loading. The mode mapping method is proposed and verified to take into account the water-loading with the minimum DOF for the analysis. The cyclic symmetric method is then reviewed to show how the eigen properties of the full model can be obtained from the representative segment model. The solution procedure is finally proposed and applied successfully for a simplified water-loaded cylindrical array structure.

Exact Algorithms of Transforming Continuous Solutions into Discrete Ones for Bit Loading Problems in Multicarrier Systems

  • Chung, Yong-Joo;Kim, Hu-Gon
    • Management Science and Financial Engineering
    • /
    • v.16 no.3
    • /
    • pp.71-84
    • /
    • 2010
  • In this study, we present the exact methods of transforming the continuous solutions into the discrete ones for two types of bit-loading problem, marginal adaptive (MA) and rate adaptive (RA) problem, in multicarrier communication systems. While the computational complexity of existing solution methods for discrete optimal solutions depends on the number of bits to be assigned (R), the proposed method determined by the number of subcarriers (N), making ours be more efficient in most cases where R is much larger than N. Furthermore our methods have some strength of their simpler form to make a practical use.

Comparison of elastic buckling loads for liquid storage tanks

  • Mirfakhraei, P.;Redekop, D.
    • Steel and Composite Structures
    • /
    • v.2 no.3
    • /
    • pp.161-170
    • /
    • 2002
  • The problem of the elastic buckling of a cylindrical liquid-storage tank subject to horizontal earthquake loading is considered. An equivalent static loading is used to represent the dynamic effect. A theoretical solution based on the nonlinear Fl$\ddot{u}$gge shell equations is developed, and numerical results are found using the new differential quadrature method. A second solution is obtained using the finite element package ADINA. A major motivation of the study was to show that the new method can serve to verify finite element solutions for cylindrical shell buckling problems. For this purpose the paper concludes with a comparison of buckling results for a number of cases covering a wide range in tank geometry.

Analysis of partially embedded beams in two-parameter foundation

  • Akoz, A.Yalcin;Ergun, Hale
    • Structural Engineering and Mechanics
    • /
    • v.42 no.1
    • /
    • pp.1-12
    • /
    • 2012
  • In this study, Pasternak foundation model, which is a two parameter foundation model, is used to analyze the behavior of laterally loaded beams embedded in semi-infinite media. Total potential energy variation of the system is written to formulate the problem that yielded the required field equations and the boundary conditions. Shear force discontinuities are exposed within the boundary conditions by variational method and are validated by photo elastic experiments. Exact solution of the deflection of the beam is obtained. Both foundation parameters are obtained by self calibration for this particular problem and loading type in this study. It is shown that, like the first parameter k, the second foundation parameter G also depends not only on the material type but also on the geometry and the loading type of the system. On the other hand, surface deflection of the semi infinite media under singular loading is obtained and another method is proposed to determine the foundation parameters using the solution of this problem.