• Title/Summary/Keyword: Loading Modes

Search Result 473, Processing Time 0.026 seconds

A Study on Cargo Ships Routing and Scheduling Emphasis on Crude Oil Tanker Scheduling Problems (배선 및 선박운항일정계획에 관한 연구 -유조선의 운항일정계획을 중심으로-)

  • Hugh, Ihl
    • Journal of the Korean Institute of Navigation
    • /
    • v.14 no.1
    • /
    • pp.21-38
    • /
    • 1990
  • This paper discusses the various modes of operations of cargo ships which are liner operations, tramp shipping and industrial operations, and mathematical programming, simulation , and heuristic method that can be used to solve ships routing and scheduling problems for each of these operations. In particular, this paper put emphasis on a crude oil tanker scheduling problem. The problem is to achieve an optimal sequence of cargoes or an optimal schedule for each ship in a given fleet during a given period. Each cargo is characterized by its type, size, loading and discharging ports, loading and discharging dates, cost, and revenue. Our approach is to enumerate all feasible candidate schedate schedules for each ship, where a candidate schedule specifies a set of cargoes that can be feasibly carried by a ship within the planning horizon , together with loading and discharging dates for each cargo in the set. Provided that candidate schedules have been generated for each ship, the problem of choosing from these an optimal schedule for each ship is formulated as a set partitioning problem, a set packing problem, and a integer generalized network problem respectively. We write the PASCAL programs for schedule generator and apply our approach to the crude oil tanker scheduling problem similar to a realistic system.

  • PDF

Harmonic Response Estimation Method on the Lévy Plate with Two Opposite Edges Having Free Boundary Conditions (마주보는 양단이 자유 경계조건을 갖는 Lévy 판의 조화 응답 해석)

  • Park, Nam-Gyu;Suh, Jung-Min;Jeon, Kyeong-Lak
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.11
    • /
    • pp.943-950
    • /
    • 2013
  • This paper discusses a harmonic response estimation method on the L$\acute{e}$vy plate with two opposite edges simply supported and the other two edges having free boundary conditions. Since the equation of motion of the plate is not self-adjoint, the modes are not orthogonal to each other on the domain. Noting that the L$\acute{e}$vy plate can be expressed using one term sinusoidal function that is orthogonal to other sinusoidal functions, this paper suggested the calculation method that is equivalent to finding a least square error minimization solution of the finite number of algebraic equations. Example problems subjected to a distributed area loading and a distributed line loading are defined and their solutions are provided. The solutions are compared to those of the commercial code, ANSYS. According to the verification results, it is expected that the suggested method will be useful to predict the forced response on the L$\acute{e}$vy plate with the distributed area or line loading conditions.

Three-dimensional finite element modelling and dynamic response analysis of track-embankment-ground system subjected to high-speed train moving loads

  • Fu, Qiang;Wu, Yang
    • Geomechanics and Engineering
    • /
    • v.19 no.3
    • /
    • pp.241-254
    • /
    • 2019
  • A finite element approach is presented to examine ground vibration characteristics under various moving loads in a homogeneous half-space. Four loading modes including single load, double load, four-load, and twenty-load were simulated in a finite element analysis to observe their influence on ground vibrations. Four load moving speeds of 60, 80, 100, and 120 m/s were adopted to investigate the influence of train speed to the ground vibrations. The results demonstrated that the loading mode in a finite element analysis is reliable for train-induced vibration simulations. Additionally, a three-dimensional finite element model (3D FEM) was developed to investigate the dynamic responses of a track-ballast-embankment-ground system subjected to moving loads induced by high-speed trains. Results showed that vibration attenuations and breaks exist in the simulated wave fronts transiting through different medium materials. These tendencies are a result of the difference in the Rayleigh wave speeds of the medium materials relative to the speed of the moving train. The vibration waves induced by train loading were greatly influenced by the weakening effect of sloping surfaces on the ballast and embankment. Moreover, these tendencies were significant when the vibration waves are at medium and high frequency levels. The vibration waves reflected by the sloping surface were trapped and dissipated within the track-ballast-embankment-ground system. Thus, the vibration amplitude outside the embankment was significantly reduced.

Effect of vertical reinforcement connection level on seismic behavior of precast RC shear walls: Experimental study

  • Yun-Lin Liu;Sushil Kumar;Dong-Hua Wang;Dong Guo
    • Earthquakes and Structures
    • /
    • v.26 no.6
    • /
    • pp.449-461
    • /
    • 2024
  • The vertical reinforcement connection between the precast reinforced concrete shear wall and the cast-in-place reinforced concrete member is vital to the performance of shear walls under seismic loading. This paper investigated the structural behavior of three precast reinforced concrete shear walls, with different levels of connection (i.e., full connection, partial connection, and no connection), subjected to quasi-static lateral loading. The specimens were subjected to a constant vertical load, resulting in an axial load ratio of 0.4. The crack pattern, failure modes, load-displacement relationships, ductility, and energy dissipation characteristics are presented and discussed. The resultant seismic performances of the three tested specimens were compared in terms of skeleton curve, load-bearing capacity, stiffness, ductility, energy dissipation capacity, and viscous damping. The seismic performance of the partially connected shear wall was found to be comparable to that of the fully connected shear wall, exhibiting 1.7% and 3.5% higher yield and peak load capacities, 9.2% higher deformability, and similar variation in stiffness, energy dissipation capacity and viscous damping at increasing load levels. In comparison, the seismic performance of the non-connected shear wall was inferior, exhibiting 12.8% and 16.4% lower loads at the yield and peak load stages, 3.6% lower deformability, and significantly lower energy dissipation capacity at lower displacement and lower viscous damping.

Fundamental Comparison of Moduli Values in Asphalt Concrete Mixture due to Various Sinusoidal Loadings (다양한 Sinusoidal 하중을 받는 아스팔트콘크리트 혼합물의 Moduli 값에 대한 비교연구)

  • Kim, Nak-Seok
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.6 no.1 s.20
    • /
    • pp.39-48
    • /
    • 2006
  • A laboratory investigation was performed to estimate the moduli values of asphalt concrete mixture due to various sinusoidal loadings in compression and tension. Total five modes of loading were used under five testing temperatures of 32, 50, 68, 86, and $104^{\circ}F$ (0, 10, 20, 30, and $40^{\circ}C$); repeated compressive haversine loading with rest period, repeated tensile haversine loading with rest period, cyclic compressive loading, cyclic tensile loading, and alternate tensile-compressive loadings. The test results showed that, due to the repeated haversine loading with rest period, asphalt concrete demonstrated similar moduli in tension and compression at low temperatures,(0 and $10^{\circ}C$) while those moduli were different at high temperatures (20, 30, and $40^{\circ}C$). At high temperatures the compressive moduli were always higher than the tensile moduli. The uniaxial tensile moduli were higher than indirect tensile moduli at low temperatures. However, those moduli were similar at high temperatures. In uniaxial cyclic tension, compression, and alternate tension-compression tests, compressive moduli were higher than tensile and alternate tensile-compressive moduli throughout the temperatures. Generally, the moduli from the repeated haversine loading with rest period were always lower than those from the cyclic sinusoidal loading. The difference in moduli from the repeated haversine loading with rest period and cyclic sinusoidal loading becomes more significant as the temperature decreases.

Effect of loading velocity on the seismic behavior of RC joints

  • Wang, Licheng;Fan, Guoxi;Song, Yupu
    • Earthquakes and Structures
    • /
    • v.8 no.3
    • /
    • pp.665-679
    • /
    • 2015
  • The strain rate of reinforced concrete (RC) structures stimulated by earthquake action has been generally recognized as in the range from $10^{-4}/s$ to $10^{-1}/s$. Because both concrete and steel reinforcement are rate-sensitive materials, the RC beam-column joints are bound to behave differently under different strain rates. This paper describes an investigation of seismic behavior of RC beam-column joints which are subjected to large cyclic displacements on the beam ends with three loading velocities, i.e., 0.4 mm/s, 4 mm/s and 40 mm/s respectively. The levels of strain rate on the joint core region are correspondingly estimated to be $10^{-5}/s$, $10^{-4}/s$, and $10^{-2}/s$. It is aimed to better understand the effect of strain rates on seismic behavior of beam-column joints, such as the carrying capacity and failure modes as well as the energy dissipation. From the experiments, it is observed that with the increase of loading velocity or strain rate, damage in the joint core region decreases but damage in the plastic hinge regions of adjacent beams increases. The energy absorbed in the hysteresis loops under higher loading velocity is larger than that under quasi-static loading. It is also found that the yielding load of the joint is almost independent of the loading velocity, and there is a marginal increase of the ultimate carrying capacity when the loading velocity is increased for the ranges studied in this work. However, under higher loading velocity the residual carrying capacity after peak load drops more rapidly. Additionally, the axial compression ratio has little effect on the shear carrying capacity of the beam-column joints, but with the increase of loading velocity, the crack width of concrete in the joint zone becomes narrower. The shear carrying capacity of the joint at higher loading velocity is higher than that calculated with the quasi-static method proposed by the design code. When the dynamic strengths of materials, i.e., concrete and reinforcement, are directly substituted into the design model of current code, it tends to be insufficiently safe.

Bending ratcheting behavior of pressurized straight Z2CND18.12N stainless steel pipe

  • Wang, Lei;Chen, Gang;Zhu, Jianbei;Sun, Xiuhu;Mei, Yunhui;Ling, Xiang;Chen, Xu
    • Structural Engineering and Mechanics
    • /
    • v.52 no.6
    • /
    • pp.1135-1156
    • /
    • 2014
  • The ratcheting effect greatly challenges the design of piping components. With the assistance of the quasi-three point bending apparatus, ratcheting and the ratcheting boundary of pressurized straight Z2CND18.12N stainless steel pipe under bending loading and vertical displacement control were studied experimentally. The characteristics of progressive inelastic deformation in axial and hoop directions of the Z2CND18.12N stainless steel pipes were investigated. The experiment results show that the ratcheting strain occurs mainly in the hoop direction while there is less ratcheting strain in the axial direction. The characteristics of the bending ratcheting behavior of the pressure pipes were derived and compared under load control and displacement control, respectively. The results show that the cyclic bending loading and the internal pressure affect the ratcheting behavior of the pressurized straight pipe significantly under load control. In the meantime, the ratcheting characteristics are also highly associated with the cyclic displacement and the internal pressure under displacement control. All these factors affect not only the saturation of the ratcheting strain but the ratcheting strain rate. A series of multi-step bending ratcheting experiments were conducted under both control modes. It was found that the hardening effect of Z2CND18.12N stainless steel pipe under previous cyclic loadings no matter with high or low displacement amplitudes is significant, and the prior loading histories greatly retard the ratcheting strain and its rate under subsequent loadings. Finally, the ratcheting boundaries of the pressurized straight Z2CND18.12N stainless steel pipe were determined and compared based on KTA/ASME, RCC-MR and the experimental results.

Effects of Rubber Loading on the Ultrasonic Backward Radiation Profile of Leaky Lamb Wave (고무 접합이 후방복사된 리키 램파 프로파일에 미치는 영향)

  • Song, Sung-Jin;Kwon, Sung-Duk;Jung, Min-Ho;Kim, Young-H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.5
    • /
    • pp.508-515
    • /
    • 2002
  • The characterization of adhesive property in multi-layer materials has been hot issue for a long time. In order to evaluate adhesive properties, we constructed fully automated system for the backward radiation of leaky Lamb wave. The backward radiation profiles were obtained for the bare steel plate and plates with rubber-loading. The rf waveforms and frequency spectra of backward radiation show the characteristics of involved leaky Lamb wave modes. As the thickness of rubber-loading increased, the amplitude of profile at the incident angle of $13.4^{\circ}$ exponentially decreased. Scanning the incident position over the partially rubber-loaded specimen shows good agreement with the actual rubber-loading. The backward radiation of leaky Lamb wave has great potential to evaluate the adhesive condition as well as material properties of plates.

A Study on the Influence Factors on Flexural and Thickness Modes in the Impact-echo Test (충격반향기법에서의 휨 모드 및 두께 모드의 영향인자에 대한 연구)

  • Oh, Tae-Keun;Park, Jongl-Il;Byun, Yoseph;Lee, Young-Hak
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.6
    • /
    • pp.659-666
    • /
    • 2015
  • In this paper, various influence factors on the impact-echo test which is an effective method in characterizing defects such as such as the delamination in the concrete structures were studied. The side to thickness ratio(a/h), the relative position of impacting and sensing points over the delamination that have great effects on the flexural and impact-echo(thickness) modes were investigated and examined by the parametric finite element analysis. As a result, the flexural modes dominate in the case of a/h > 2 and the thickness mode was more evident when a/h < 2. With regard to the relative position of impact source and sensing point to the defect, the flexural modes dominate even when either the loading or sensing point was over the delamination defect. However, the thickness mode prevails when both the impacting and sensing points are over the solid region beyond the delamination area.

Influence of lateral motion of cable stays on cable-stayed bridges

  • Wang, P.H.;Liu, M.Y.;Huang, Y.T.;Lin, L.C.
    • Structural Engineering and Mechanics
    • /
    • v.34 no.6
    • /
    • pp.719-738
    • /
    • 2010
  • The aim of this paper concerns with the nonlinear analysis of cable-stayed bridges including the vibration effect of cable stays. Two models for the cable stay system are built up in the study. One is the OECS (one element cable system) model in which one single element per cable stay is used and the other is MECS (multi-elements cable system) model, where multi-elements per cable stay are used. A finite element computation procedure has been set up for the nonlinear analysis of such kind of structures. For shape finding of the cable-stayed bridge with MECS model, an efficient computation procedure is presented by using the two-loop iteration method (equilibrium iteration and shape iteration) with help of the catenary function method to discretize each single cable stay. After the convergent initial shape of the bridge is found, further analysis can then be performed. The structural behaviors of cable-stayed bridges influenced by the cable lateral motion will be examined here detailedly, such as the static deflection, the natural frequencies and modes, and the dynamic responses induced by seismic loading. The results show that the MECS model offers the real shape of cable stays in the initial shape, and all the natural frequencies and modes of the bridge including global modes and local modes. The global mode of the bridge consists of coupled girder, tower and cable stays motion and is a coupled mode, while the local mode exhibits only the motion of cable stays and is uncoupled with girder and tower. The OECS model can only offers global mode of tower and girder without any motion of cable stays, because each cable stay is represented by a single straight cable (or truss) element. In the nonlinear seismic analysis, only the MECS model can offer the lateral displacement response of cable stays and the axial force variation in cable stays. The responses of towers and girders of the bridge determined by both OECS- and MECS-models have no great difference.