• Title/Summary/Keyword: Loading Distribution Method

Search Result 562, Processing Time 0.026 seconds

Poly(ε-caprolactone) Microcapsule with Encapsulated Nifedipine Prepared by Magnetic Stirrer

  • Lee, Hyeran;Lee, Deuk Yong;Song, Yo-Seung;Kim, Bae-Yeon
    • Journal of Biomedical Engineering Research
    • /
    • v.40 no.1
    • /
    • pp.7-14
    • /
    • 2019
  • The microencapsulation of nifedipine (NF) with 4 wt% of poly(${\varepsilon}-caprolactone$) (PCL)/polyvinylpyrollidone (PVP) or PCL/polyethylene glycol (PEG) was carried out by solvent evaporation method in oil in water emulsion system to investigate the effect of PVP and PEG addition on drug release behavior of the microcapsules. The PVA (emulsifier) concentration of 1.0 wt% was chosen for the formation of PCL capsule having an average size of $154{\pm}25{\mu}m$ due to nearly spherical shape with a narrow size distribution. As PCL/PVP and PCL/PEG ratios were raised from 10/0 to 6/4, the capsule size increased gradually from $154{\pm}25{\mu}m$ to $236{\pm}32{\mu}m$ and $248{\pm}56{\mu}m$, respectively. The drug release rate of PCL/PVP and PCL/PEG capsules increased dramatically from 0 to 4 h at the beginning and then reached the plateau region from 20 h. As the concentration of PVP or PEG increased, the amount of drug release increased, suggesting that the larger capsule size was attributed to the higher drug content. However, the drug release behavior remained almost constant. The PCL capsules exhibited no evidence of causing cell lysis or toxicity regardless of NF loading, implying that the microcapsules are clinically suitable for use as drug delivery systems.

Nonlinear thermoelastic analysis of FGM thick plates

  • Bouhlali, Malika;Chikh, Abdelbaki;Bouremana, Mohammed;Kaci, Abdelhakim;Bourada, Fouad;Belakhdar, Khalil;Tounsi, Abdelouahed
    • Coupled systems mechanics
    • /
    • v.8 no.5
    • /
    • pp.439-457
    • /
    • 2019
  • In this paper, a new application of a four variable refined plate theory to analyze the nonlinear bending of functionally graded plates exposed to thermo-mechanical loadings, is presented. This recent theory is based on the assumption that the transverse displacements consist of bending and shear components in which the bending components do not contribute toward shear forces, and similarly, the shear components do not contribute toward bending moments. The derived transverse shear strains has a quadratic variation across the thickness that satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. The material properties are assumed to vary continuously through the thickness of the plate according to a power-law distribution of the volume fraction of the constituents. The solutions are achieved by minimizing the total potential energy. The non-linear strain-displacement relations in the von Karman sense are used to derive the effect of geometric non-linearity. It is concluded that the proposed theory is accurate and simple in solving the nonlinear bending behavior of functionally graded plates.

Computer modeling of elastoplastic stress state of fibrous composites with hole

  • Polatov, Askhad M.;Ikramov, Akhmat M.;Khaldjigitov, Abduvali A.
    • Coupled systems mechanics
    • /
    • v.8 no.4
    • /
    • pp.299-313
    • /
    • 2019
  • The paper represents computer modeling of the deformed state of physically nonlinear transversally isotropic bodies with hole. In order to describe the anisotropy of the mechanical properties of transversally-isotropic materials a structurally phenomenological model has been used. This model allows representing the initial material in the form of the coupled isotropic materials: the basic material (binder) considered from the positions of continuum mechanics and the fiber material oriented along the anisotropy direction of the original material. It is assumed that the fibers perceive only the axial tensile-compression forces and are deformed together with the base material. To solve the problems of the theory of plasticity, simplified theories of small elastoplastic deformation have been used for a transversely-isotropic body, developed by B.E. Pobedrya. A simplified theory allows applying the theory of small elastoplastic deformations to solve specific applied problems, since in this case the fibrous medium is replaced by an equivalent transversely isotropic medium with effective mechanical parameters. The essence of simplification is that with simple stretching of composite in direction of the transversal isotropy axis and in direction perpendicular to it, plastic deformations do not arise. As a result, the intensity of stresses and deformations both along the principal axis of the transversal isotropy and along the perpendicular plane of isotropy is determined separately. The representation of the fibrous composite in the form of a homogeneous anisotropic material with effective mechanical parameters allows for a sufficiently accurate calculation of stresses and strains. The calculation is carried out under different loading conditions, keeping in mind that both sizes characterizing the fibrous material fiber thickness and the gap between the fibers-are several orders smaller than the radius of the hole. Based on the simplified theory and the finite element method, a computer model of nonlinear deformation of fibrous composites is constructed. For carrying out computational experiments, a specialized software package was developed. The effect of hole configuration on the distribution of deformation and stress fields in the vicinity of concentrators was investigated.

The effect of fiber reinforcement on behavior of Concrete-Filled Steel Tube Section (CFST) under transverse impact: Experimentally and numerically

  • Yaman, Zeynep
    • Structural Engineering and Mechanics
    • /
    • v.82 no.2
    • /
    • pp.173-189
    • /
    • 2022
  • This study presents an experimental and numerically study about the effects of fiber reinforcement ratio on the behavior of concrete-filled steel tubes (CFST) under dynamic impact loading. In literature have examined the behavior of GFRP and FRP wrapped strengthened CFST elements impact loads. However, since the direction of potential impact force isn't too exact, there is always the probability of not being matched the impact force of the area where the reinforced. Therefore, instead of the fiber textile wrapping method which strengthens only a particular area of CFST element, we used fiber-added concrete-filled elements which allow strengthening the whole element. Thus, the effect of fiber-addition in concrete on the behavior of CFST elements under impact loads was examined. To do so, six simply supported CFST beams were constructed with none fiber, 2% fiber and 10% fiber reinforcement ratio on the concrete part of the CFST beam. CFST beams were examined under two different impact loads (75 kg and 225 kg). The impactors hit the beam from a 2000 mm free fall during the experimental study. Numerical models of the specimens were created using ABAQUS finite element software and validated with experimental data. The obtained results such as; mid-span displacement, acceleration, failure modes and energies from experimental and numerical studies were compared and discussed. Furthermore, the Von Misses stress distribution of the CFST beams with different ratio of fiber reinforcements were investigated numerically. To sum up, there is an optimum amount limit of the fiber reinforcement on CFST beams. Up to this limit, the fiber reinforcement increases the structural performances of the beam, beyond that limit the fiber reinforcement decreases the performances of the CFST beam under transverse impact loadings.

3D Numerical investigation of a rounded corner square cylinder for supercritical flows

  • Vishwanath, Nivedan;Saravanakumar, Aditya K.;Dwivedi, Kush;Murthy, Kalluri R.C.;Gurugubelli, Pardha S.;Rajasekharan, Sabareesh G.
    • Wind and Structures
    • /
    • v.35 no.1
    • /
    • pp.55-66
    • /
    • 2022
  • Tall buildings are often subjected to steady and unsteady forces due to external wind flows. Measurement and mitigation of these forces becomes critical to structural design in engineering applications. Over the last few decades, many approaches such as modification of the external geometry of structures have been investigated to mitigate wind-induced load. One such proven geometric modification involved the rounding of sharp corners. In this work, we systematically analyze the impact of rounded corner radii on the reducing the flow-induced loading on a square cylinder. We perform 3-Dimensional (3D) simulations for high Reynolds number flows (Re=1 × 105) which are more likely to be encountered in practical applications. An Improved Delayed Detached Eddy Simulation (IDDES) method capable of capturing flow accurately at large Reynolds numbers is employed in this study. The IDDES formulation uses a k-ω Shear Stress Transport (SST) model for near-wall modelling that prevents mesh-induced separation of the boundary layer. The effects of these corner modifications are analyzed in terms of the resulting variations in the mean and fluctuating components of the aerodynamic forces compared to a square cylinder with no geometric changes. Plots of the angular distribution of the mean and fluctuating coefficient of pressure along the square cylinder's surface illustrate the effects of corner modifications on the different parts of the cylinder. The windward corner's separation angle was observed to decrease with an increase in radius, resulting in a narrower and longer recirculation region. Furthermore, with an increase in radius, a reduction in the fluctuating lift, mean drag, and fluctuating drag coefficients has been observed.

A self-confined compression model of point load test and corresponding numerical and experimental validation

  • Qingwen Shi;Zhenhua Ouyang;Brijes Mishra;Yun Zhao
    • Computers and Concrete
    • /
    • v.32 no.5
    • /
    • pp.465-474
    • /
    • 2023
  • The point load test (PLT) is a widely-used alternative method in the field to determine the uniaxial compressive strength due to its simple testing machine and procedure. The point load test index can estimate the uniaxial compressive strength through conversion factors based on the rock types. However, the mechanism correlating these two parameters and the influence of the mechanical properties on PLT results are still not well understood. This study proposed a theoretical model to understand the mechanism of PLT serving as an alternative to the UCS test based on laboratory observation and literature survey. This model found that the point load test is a self-confined compression test. There is a compressive ellipsoid near the loading axis, whose dilation forms a tensile ring that provides confinement on this ellipsoid. The peak load of a point load test is linearly positive correlated to the tensile strength and negatively correlated to the Poisson ratio. The model was then verified using numerical and experimental approaches. In numerical verification, the PLT discs were simulated using flat-joint BPM of PFC3D to model the force distribution, crack propagation and BPM properties' effect with calibrated micro-parameters from laboratory UCS test and point load test of Berea sandstones. It further verified the mechanism experimentally by conducting a uniaxial compressive test, Brazilian test, and point load test on four different rocks. The findings from this study can explain the mechanism and improve the understanding of point load in determining uniaxial compressive strength.

A comprehensive stress analysis in a functionally graded spherical pressure vessel: Thermo-elastic, elastoplastic and residual stress analysis

  • Thaier J. Ntayeesh;Mohsen Kholdi;Soheil Saeedi;Abbas Loghman;Mohammad Arefi
    • Steel and Composite Structures
    • /
    • v.52 no.3
    • /
    • pp.377-390
    • /
    • 2024
  • Analyzing thermoelastic, elastoplastic, and residual stresses is pivotal for deepening our insights into material characteristics, particularly in the engineering of advanced materials like functionally graded materials (FGM). This research delves into these stress types within a thick-walled sphere composed of Al-SiC FGM, employing a detailed successive approximation method (SAM) to pinpoint stress distributions under varied loading scenarios. Our investigation centers on how the sphere's structure responds to different magnitudes of internal pressure. We discover that under various states-thermoelastic, elastoplastic, and residual-the radial stresses are adversely impacted, manifesting negative values due to the compressive nature induced by internal pressures. Notably, the occurrence of reverse yielding, observed at pressures above 410 MPa, merits attention due to its significant implications on the sphere's structural integrity and operational efficacy. Employing the SAM allows us to methodically explore the nuanced shifts in material properties across the sphere's thickness. This study not only highlights the critical behaviors of Al-SiC FGM spheres under stress but also emphasizes the need to consider reverse yielding phenomena to maintain safety and reliability in their application. We advocate for ongoing refinement of analytical techniques to further our understanding of stress behaviors in various FGM configurations, which could drive the optimized design and practical application of these innovative materials in diverse engineering fields.

Atmospheric correction by Spectral Shape Matching Method (SSMM): Accounting for horizontal inhomogeneity of the atmosphere

  • Shanmugam Palanisamy;Ahn Yu-Hwan
    • Proceedings of the KSRS Conference
    • /
    • 2006.03a
    • /
    • pp.341-343
    • /
    • 2006
  • The current spectral shape matching method (SSMM), developed by Ahn and Shanmugam (2004), relies on the assumption that the path radiance resulting from scattered photons due to air molecules and aerosols and possibly direct-reflected light from the air-sea interface is spatially homogeneous over the sub-scene of interest, enabling the retrieval of water-leaving radiances ($L_w$) from the satellite ocean color image data. This assumption remains valid for the clear atmospheric conditions, but when the distribution of aerosol loadings varies dramatically the above postulation of spatial homogeneity will be violated. In this study, we present the second version of SSMM which will take into account the horizontal variations of aerosol loading in the correction of atmospheric effects in SeaWiFS ocean color image data. The new version includes models for the correction of the effects of aerosols and Raleigh particles and a method fur computation of diffuse transmittance ($t_{os}$) as similar to SeaWiFS. We tested this method over the different optical environments and compared its effectiveness with the results of standard atmospheric correction (SAC) algorithm (Gordon and Wang, 1994) and those from in-situ observations. Findings revealed that the SAC algorithm appeared to distort the spectral shape of water-leaving radiance spectra in suspended sediments (SS) and algal bloom dominated-areas and frequently yielded underestimated or often negative values in the lower green and blue part of the electromagnetic spectrum. Retrieval of water-leaving radiances in coastal waters with very high sediments, for instance = > 8g $m^{-3}$, was not possible with the SAC algorithm. As the current SAC algorithm does not include models for the Asian aerosols, the water-leaving radiances over the aerosol-dominated areas could not be retrieved from the image and large errors often resulted from an inappropriate extrapolation of the estimated aerosol radiance from two IR bands to visible spectrum. In contrast to the above results, the new SSMM enabled accurate retrieval of water-leaving radiances in a various range of turbid waters with SS concentrations from 1 to 100 g $m^{-3}$ that closely matched with those from the in-situ observations. Regardless of the spectral band, the RMS error deviation was minimum of 0.003 and maximum of 0.46, in contrast with those of 0.26 and 0.81, respectively, for SAC algorithm. The new SSMM also remove all aerosol effects excluding areas for which the signal-to-noise ratio is much lower than the water signal.

  • PDF

Analysis of Occlusal Contacts Using Add-picture Method (Add-picture 방법을 이용한 교합접촉점 분석)

  • Park, Ko-Woon;Cho, Lee-Ra;Kim, Dae-Gon;Park, Chan-Jin
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.29 no.1
    • /
    • pp.45-58
    • /
    • 2013
  • The purpose of this study was to analyze the area of occlusal contact points using visual method. One subject was selected who had Angle Class I, normal dentition, without dental caries, periodontal disease and temporomandibular disorders. Forty times PVS impressions were taken and 10 pairs casts were fabricated using dental super hard stone. After mounting the casts with customized loading apparatus, 78.9kg/f force was loaded as a maximum biting force. In T-Scan method, occlusal contact points measurement was repeated twice. Then, using Photoshop program (Adobe photoshop CS3, Adobe. San Jose, USA), the pixels which indicated occlusal contact points by color was recognized, and the distribution of recognized pixels were calculated to area. In Add picture method, polyether bite material applied to the occlusal surface of the casts. Then, the image of the translucent areas was recorded and classified $0{\sim}10{\mu}m$, $0{\sim}30{\mu}m$, $0{\sim}60{\mu}m$ area by the amount of transmitted light. To acquire occlusal surface, the numbers of pixels from the photograph of the contact area indicated cast converted to $mm^2$. The mean occlusal contact area by two methods was statistically analyzed (paired t-test). Part of the red and pink area in T-Scan image were almost equivalent to the $0{\sim}10{\mu}m$, $0{\sim}30{\mu}m$, $0{\sim}60{\mu}m$ area in Add picture image. The distribution of occlusal contact points were similar, but the average area of occlusal contact points was wider in T-scan image (P<.05). Pink and red area in T-scan image was wider than $0{\sim}10{\mu}m$, $0{\sim}30{\mu}m$ area in Add picture image (P<.05), but similar to $0{\sim}60{\mu}m$area in Add picture image (P>.05). Occlusal contact points in T-scan image did not indicate real occlusal contact points. Occlusal contact areas in T-scan method were enlarged results comparing with those in Add picture method.

Variation of strength of soil matrix with artificially manipulating particle distribution of granular soil (인위적 입도조정에 따른 지반의 강도특성 변화)

  • Moon, Jun-Ho;Xin, Zhen-Hua;Kim, Gab-Boo;Moon, Sun-Mi;Kim, Young-Uk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.56-62
    • /
    • 2018
  • In this study, an artificially formed Gap graded soil, designed to increase its shear strength, was analyzed to determine the strength parameters through direct shear tests. Uniform and fine grain size samples were compared to the Gap graded soil to investigate the increase in the shear strength. Plate loading tests were conducted using 13mm and 19mm aggregates to confirm the reproducibility of the strength enhanced samples for site application. This test confirmed that the particle size ratio and the internal friction angle are correlated to the shear strength, and the shear resistance angle significantly increased in the specific particle size ratio range. The calculation of the ultimate bearing capacity by the plate load test demonstrated that the grain size adjustment method greatly influences the strength increase rate. Therefore, the findings were verified and it was confirmed that a high shear strength is achievable despite the existence of a poor particle size distribution.