Browse > Article
http://dx.doi.org/10.12989/csm.2019.8.5.439

Nonlinear thermoelastic analysis of FGM thick plates  

Bouhlali, Malika (Department of Civil Engineering, Faculty of Technology, Material and Hydrology Laboratory, University of Sidi Bel Abbes)
Chikh, Abdelbaki (Department of Civil Engineering, Faculty of Technology, Material and Hydrology Laboratory, University of Sidi Bel Abbes)
Bouremana, Mohammed (Department of Civil Engineering, Faculty of Technology, Material and Hydrology Laboratory, University of Sidi Bel Abbes)
Kaci, Abdelhakim (Department of Civil Engineering, Faculty of Technology, Material and Hydrology Laboratory, University of Sidi Bel Abbes)
Bourada, Fouad (Department of Civil Engineering, Faculty of Technology, Material and Hydrology Laboratory, University of Sidi Bel Abbes)
Belakhdar, Khalil (Department of Civil Engineering, Faculty of Technology, Material and Hydrology Laboratory, University of Sidi Bel Abbes)
Tounsi, Abdelouahed (Department of Civil Engineering, Faculty of Technology, Material and Hydrology Laboratory, University of Sidi Bel Abbes)
Publication Information
Coupled systems mechanics / v.8, no.5, 2019 , pp. 439-457 More about this Journal
Abstract
In this paper, a new application of a four variable refined plate theory to analyze the nonlinear bending of functionally graded plates exposed to thermo-mechanical loadings, is presented. This recent theory is based on the assumption that the transverse displacements consist of bending and shear components in which the bending components do not contribute toward shear forces, and similarly, the shear components do not contribute toward bending moments. The derived transverse shear strains has a quadratic variation across the thickness that satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. The material properties are assumed to vary continuously through the thickness of the plate according to a power-law distribution of the volume fraction of the constituents. The solutions are achieved by minimizing the total potential energy. The non-linear strain-displacement relations in the von Karman sense are used to derive the effect of geometric non-linearity. It is concluded that the proposed theory is accurate and simple in solving the nonlinear bending behavior of functionally graded plates.
Keywords
functional composites; plate; large deformation; energy method; thermo-mechanical loading;
Citations & Related Records
Times Cited By KSCI : 15  (Citation Analysis)
연도 인용수 순위
1 Katariya, P., Hirwani, C.K. and Panda, S. (2018), "Geometrically nonlinear deflection and stress analysis of skew sandwich shell panel using higher-order theory", Eng. Comput., 35(2), 467-485. https://doi.org/10.1007/s00366-018-0609-3.   DOI
2 Kolahchi, R., Zarei, M.Sh., Hajmohammad, M.H. and Naddaf Oskouei, A. (2017), "Visco-nonlocal refined Zigzag theories for dynamic buckling of laminated nanoplates using differential cubature-Bolotin methods", Thin-Wall. Struct., 113, 162-169. https://doi.org/10.1016/j.tws.2017.01.016.   DOI
3 Lal, A., Jagtap, K.R. and Singh, B.N. (2017), "Thermo-mechanically induced finite element based nonlinear static response of elastically supported functionally graded plate with random system properties", Adv. Comput. Des., 2(3), 165-194. https://doi.org/10.12989/acd.2017.2.3.165.   DOI
4 Li, D., Deng, Z., Chen, G., Xiao, H. and Zhu, L. (2017), "Thermomechanical bending analysis of sandwich plates with both functionally graded face sheets and functionally graded core", Compos. Struct., 169, 29-41. https://doi.org/10.1016/j.compstruct.2017.01.026.   DOI
5 Mahapatra, T.R., Kar, V. and Panda, S. (2016a), "Large amplitude bending behaviour of laminated composite curved panels", Eng. Comput., 33(1), 116-138. https://doi.org/10.1108/EC-05-2014-0119.   DOI
6 Mahapatra, T.R., Panda, S.K. and Kar, V. (2016b), "Geometrically nonlinear flexural analysis of hygro-thermo-elastic laminated composite doubly curved shell panel", Int. J. Mech. Mater. Des., 12(2), 153-171. https://doi.org/10.1007/s10999-015-9299-9.   DOI
7 Mahapatra, T.R., Panda, S.K. and Kar, V. (2016c), "Nonlinear flexural analysis of laminated composite panel under hygro-thermo-mechanical loading-A micromechanical approach", Int. J. Comput. Meth., 13(3), 1650015. https://doi.org/10.1142/S0219876216500158.   DOI
8 Mantari J.L., Oktem A.S. and Guedes Soares C. (2012), "Bending response of functionally graded plates by using a new higher order shear deformation theory", Compos. Struct., 94(2), 714-723. https://doi.org/10.1016/j.compstruct.2011.09.007.   DOI
9 Mehar, K. and Panda, S.K. (2019), "Theoretical deflection analysis of multi-walled carbon nanotube reinforced sandwich panel and experimental verification", Compos. Part B Eng., 167, 317-328. https://doi.org/10.1016/j.compositesb.2018.12.058.   DOI
10 Mehar, K., Panda, S.K. and Patle, B.K. (2017), "Thermoelastic vibration and flexural behavior of FG-CNT reinforced composite curved panel", Int. J. Appl. Mech., 9(4), 1750046. https://doi.org/10.1142/S1758825117500466.   DOI
11 Mehar, K., Panda, S.K. and Patle, B.K. (2018), "Stress, deflection, and frequency analysis of CNT reinforced graded sandwich plate under uniform and linear thermal environment: A finite element approach", Polym. Compos., 39(10), 3792-3809. https://doi.org/10.1002/pc.24409.   DOI
12 Miyamoto Y., Kaysser W.A., Rabin B.H., Kawasaki A. and Ford R.G., (1999), Functionally Graded Materials, Design, Processing and Applications, Kluwer Academic Publishers, Netherlands.
13 Mohammadzadeh, B., Choi, E. and Kim, D. (2019), "Vibration of sandwich plates considering elastic foundation, temperature change and FGM faces", Struct. Eng. Mech., 70(5), 601-621. https://doi.org/10.12989/sem.2019.70.5.601.   DOI
14 Nguyen-Xuan H., Tran L.V., Thai C.H., Kulasegaram S. and Bordas S.P.A., (2014), "Isogeometric analysis of functionally graded plates using a refined plate theory", Compos. Part B Eng., 64, 222-234. https://doi.org/10.1016/j.compositesb.2014.04.001.   DOI
15 Panjehpour, M., Loh, E.W.K. and Deepak, T.J. (2018), "Structural insulated panels: State-of-the-Art", Trends Civ. Eng. Architect., 3(1) 336-340. https://doi.org/10.32474/TCEIA.2018.03.000151.
16 Patle, B.K., Hirwani, C.K., Singh, R.P. and Panda, S.K. (2018), "Eigenfrequency and deflection analysis of layered structure using uncertain elastic properties - a fuzzy finite element approach", Int. J. Approx. Reason., 98, 163-176. https://doi.org/10.1016/j.ijar.2018.04.013.   DOI
17 Sharma, N., Lalepalli, A.K., Hirwani, C.K., Das, A. and Panda, S.K. (2019), "Optimal deflection and stacking sequence prediction of curved composite structure using hybrid (FEM and soft computing) technique", Eng. Comput., 1-11. https://doi.org/10.1007/s00366-019-00836-8.
18 Ramos, I.A., Mantari, J.L., Pagani, A. and Carrera, E. (2016), "Refined theories based on non-polynomial kinematics for the thermoelastic analysis of functionally graded plates", J. Therm. Stresses, 39(7), 835-853. https://doi.org/10.1080/01495739.2016.1189771.   DOI
19 Reddy, J.N. (2000), "Analysis of functionally graded plates", Int. J. Numer. Meth. Eng., 47(1-3), 663-684. https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<663::AID-NME787>3.0.CO;2-8.   DOI
20 Shahsavari, D., Shahsavarib, M., Li, L. and Karami, B. (2018), "A novel quasi-3D hyperbolic theory for free vibration of FG plates with porosities resting on Winkler/Pasternak/Kerr foundation", Aerosp. Sci. Technol., 72, 134-149. https://doi.org/10.1016/j.ast.2017.11.004.   DOI
21 Siddiqui, F. (2015), "Extended higher order theory for sandwich plates of arbitrary aspect ratio", Ph.D. Thesis, Georgia Institute of Technology, Georgia, Atlanta, U.S.A.
22 Sobhy, M. (2013), "Buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions", Compos. Struct., 99, 76-87. https://doi.org/10.1016/j.compstruct.2012.11.018.   DOI
23 Talha, M. and Singh, B.N. (2011), "Nonlinear mechanical bending of functionally graded material plates under transverse loads with various boundary conditions", Int. J. Model. Simul. Sci. Comput., 2(2), 237-258. https://doi.org/10.1142/S1793962311000451.   DOI
24 Thai, H.T. and Choi, D.H. (2013), "A simple first-order shear deformation theory for the bending and free vibration analysis of functionally graded plates", Compos. Struct., 101, 332-340. https://doi.org/10.1016/j.compstruct.2013.02.019.   DOI
25 Yang, J. and Shen, H.S. (2003), "Nonlinear bending analysis of shear deformable functionally graded plates subjected to thermo-mechanical loads under various boundary conditions", Compos. Part B, 34(2), 103-115. https://doi.org/10.1016/S1359-8368(02)00083-5.   DOI
26 Thai, H.T. and Kim, S.E. (2013), "A simple higher-order shear deformation theory for bending and free vibration analysis of functionally graded plates", Compos. Struct., 96, 165-173. https://doi.org/10.1016/j.compstruct.2012.08.025.   DOI
27 Tornabene, F., Brischetto, S., Fantuzzi, N. and Bacciocchi, M. (2016), "Boundary conditions in 2D numerical and 3D exact models for cylindrical bending analysis of functionally graded structures", Shock Vib., 114-129. http://dx.doi.org/10.1155/2016/2373862.
28 Tuma, J.J. (1970), Engineering Mathematics Handbook, Definitions, Theorems, Formulas, Tables, McGraw-Hill Inc., New York, U.S.A.
29 Akavci, S.S. (2016), "Mechanical behavior of functionally graded sandwich plates on elastic foundation", Compos. Part B, 96, 136-152. https://doi.org/10.1016/j.compositesb.2016.04.035.   DOI
30 Ahmed, A. (2014), "Post buckling analysis of sandwich beams with functionally graded faces using a consistent higher order theory", Int. J. Civil Struct. Environ., 4(2), 59-64.
31 Akbas, S.D. (2017), "Nonlinear static analysis of functionally graded porous beams under thermal effect", Coupled Syst. Mech., 6(4), 399-415. https://doi.org/10.12989/csm.2017.6.4.399.   DOI
32 Akbas, S.D. (2018), "Nonlinear thermal displacements of laminated composite beams", Coupled Syst. Mech., 7(6), 691-705. https://doi.org/10.12989/csm.2018.7.6.691.   DOI
33 Akbas, S.D. (2019), "Forced vibration analysis of functionally graded sandwich deep beams", Coupled Syst. Mech., 8(3), 259-271. http://doi.org/10.12989/csm.2019.8.3.259.   DOI
34 Akgoz, B. and Civalek, O. (2011), "Nonlinear vibration analysis of laminated plates resting on nonlinear two-parameters elastic foundations", Steel Compos. Struct., 11(5), 403-421. https://doi.org/10.12989/scs.2011.11.5.403.   DOI
35 Aldousari, S.M. (2017), "Bending analysis of different material distributions of functionally graded beam", Appl. Phys. A, 123(4), 296. https://doi.org/10.1007/s00339-017-0854-0.   DOI
36 Ayat, H., Kellouche, Y., Ghrici, M. and Boukhatem, B. (2018), "Compressive strength prediction of limestone filler concrete using artificial neural networks", Adv. Comput. Des., 3(3), 289-302. https://doi.org/10.12989/acd.2018.3.3.289.   DOI
37 Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603.   DOI
38 Avcar, M. and Alwan, A.S. (2017), "Free vibration of functionally graded Rayleigh beam", Int. J. Eng. Appl. Sci., 9(2), 127-127. http://dx.doi.org/10.24107/ijeas.322884.
39 Avcar, M. and Mohammed, W.K.M. (2018), "Free vibration of functionally graded beams resting on Winkler-Pasternak foundation", Arab. J. Geosci., 11(10), 232. https://doi.org/10.1007/s12517-018-3579-2.   DOI
40 Bakhti K., Kaci A., Bousahla A.A., Houari M.S.A., Tounsi A. and Adda Bedia E.A., (2013), "Large deformation analysis for functionally graded carbon nanotube-reinforced composite plates using an efficient and simple refined theory", Steel Compos. Struct., 14(4), 335-347. http://dx.doi.org/10.12989/scs.2013.14.4.335.   DOI
41 Behera, S. and Kumari, P. (2018), "Free vibration of Levy-type rectangular laminated plates using efficient zig-zag theory", Adv. Comput. Des., 3(3), 213-232. https://doi.org/10.12989/acd.2018.3.3.213.   DOI
42 Bensaid, I., Bekhadda, A., Kerboua, B. and Abdelmadjid, C. (2018), "Investigating nonlinear thermal stability response of functionally graded plates using a new and simple HSDT", Wind Struct., 27(6), 369-380. https://doi.org/10.12989/was.2018.27.6.369.   DOI
43 Civalek, O. (2017), "Free vibration of carbon nanotubes reinforced (CNTR) and functionally graded shells and plates based on FSDT via discrete singular convolution method", Compos. B Eng., 111, 45-59. https://doi.org/10.1016/j.compositesb.2016.11.030.   DOI
44 Eltaher, M.A., Alshorbagy, A.E. and Mahmoud, F.F. (2013), "Determination of neutral axis position and its effect on natural frequencies of functionally graded macro/nanobeams", Compos. Struct., 99, 193-201. https://doi.org/10.1016/j.compstruct.2012.11.039.   DOI
45 Daouadji, T.H. (2017), "Analytical and numerical modeling of interfacial stresses in beams bonded with a thin plate", Adv. Comput. Des., 2(1), 57-69. https://doi.org/10.12989/acd.2017.2.1.057.   DOI
46 Daouadji, T.H., Benferhat, R. and Adim, B. (2016), "Bending analysis of an imperfect advanced composite plates resting on the elastic foundations", Coupled Syst. Mech., 5(3), 269-283. https://doi.org/10.12989/csm.2016.5.3.269.   DOI
47 Dash, S., Mehar, K., Sharma, N., Mahapatra, T.R. and Panda, S.K. (2019), "Finite element solution of stress and flexural strength of functionally graded doubly curved sandwich shell panel", Earthq. Struct., 16(1), 55-67. https://doi.org/10.12989/eas.2019.16.1.055.   DOI
48 Ghayesh, M.H. and Farokhi, H. (2018), "Bending and vibration analyses of coupled axially functionally graded tapered beams", Nonlin. Dyn., 91(1), 17-28. https://doi.org/10.1007/s11071-017-3783-8.   DOI
49 Hadji, L., Meziane, M., Abdelhak, Z., Daouadji, T.H. and Adda Bedia, E.A. (2016), "Static and dynamic behavior of FGM plate using a new first shear deformation plate theory", Struct. Eng. Mech., 57(1), 127-140. https://doi.org/10.12989/sem.2016.57.1.127.   DOI
50 Hirwani, C.K., Panda, S.K. and Patle, B.K. (2018), "Theoretical and experimental validation of nonlinear deflection and stress responses of an internally debonded layer structure using different higher-order theories", Acta Mechanica, 229(8), 3453-3473. https://doi.org/10.1007/s00707-018-2173-8.   DOI
51 Hussain, M. and Naeem, M.N. (2019), "Rotating response on the vibrations of functionally graded zigzag and chiral single walled carbon nanotubes", Appl. Math. Modell., 75, 506-520. https://doi.org/10.1016/j.apm.2019.05.039.   DOI
52 Kar, V.R. and Panda, S.K. (2015), "Nonlinear flexural vibration of shear deformable functionally graded spherical shell panel", Steel Compos. Struct., 18(3), 693-709. https://doi.org/10.12989/scs.2015.18.3.693.   DOI
53 Kaci, A., Bakhti, K., Hebali, H., Tounsi, A. and Adda Bedia, E.A. (2013a), "Mathematical solution for nonlinear cylindrical bending of sigmoid functionally graded plates", J. Appl. Mech. Tech. Phys., 54(1), 124-131. https://doi.org/10.1134/S002189441301015X.   DOI
54 Kaci, A., Belakhdar, K., Tounsi, A. and Adda Bedia, E.A (2014), "Nonlinear cylindrical bending analysis of exponential functionally graded plates with variable thickness", Steel Compos. Struct., 16(4), 339-356. http://dx.doi.org/10.12989/scs.2014.16.4.339.   DOI
55 Kaci, A., Draiche, K., Zidi, M., Houari, M.S.A. and Tounsi, A. (2013b), "An efficient and simple refined theory for nonlinear bending analysis of functionally graded sandwich plates", J. Appl. Mech. Tech. Phys., 54(5), 847-856. https://doi.org/10.1134/S0021894413050180.   DOI
56 Kar, V.R. and Panda, S.K. (2016a), "Nonlinear thermomechanical deformation behaviour of P-FGM shallow spherical shell panel", Chin. J. Aeronaut., 29(1), 173-183.   DOI
57 Kar, V.R. and Panda, S.K. (2016b), "Nonlinear thermomechanical behavior of functionally graded material cylindrical/hyperbolic/elliptical shell panel with temperature-dependent and temperature-independent properties", J. Pressure Vessel Technol., 138(6), 061202. https://doi.org/10.1115/1.4033701.   DOI
58 Katariya, P. and Panda, S. (2019a), "Numerical evaluation of transient deflection and frequency responses of sandwich shell structure using higher order theory and different mechanical loadings", Eng. Comput., 35(3), 1009-1026. https://doi.org/10.1007/s00366-018-0646-y.   DOI
59 Katariya, P. and Panda, S. (2019b), "Frequency and deflection responses of shear deformable skew sandwich curved shell panel: A finite element approach", Arab. J. Sci. Eng., 44(2), 1631-1648. https://doi.org/10.1007/s13369-018-3633-0.   DOI