• Title/Summary/Keyword: Load-sharing

Search Result 400, Processing Time 0.024 seconds

Improved Load Sharing Rate in Paralleled Operated Lead Acid Batteries (납 축전지의 병렬운전시 부하분담률 개선)

  • 반한식;최규하
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.1
    • /
    • pp.34-42
    • /
    • 2001
  • A battery is the device that transforms the chemical energy into the direct-current electrical energy directly without a mechanical process. Unit cells are connected in series to obtain the required voltage, while being connected in parallel to organize capacity for load current and to decrease the internal resistance for corresponding the sudden shift of the load current. Because the voltage droop down in one set of battery is faster than in tow one, it amy result in the low efficiency of power converter with the voltage drop and cause the system shutdown. However, when the system being driven in parallel, a circular-current can be generated. The changing current differs in each set of battery because the system including batteries, rectifiers and loads is connected in parallel and it makes the charge voltage constant. It is shown that, as a result the new batteries are heated by over-charge and over-discharge, and the over charge current increases rust of the positive grid and consequently shortens the lifetime of the new batteries. The difference between the new batteries and old ones is the amount of internal resistance. In this paper, we can detect the unbalance current using the micro-processor and achieve the balance current by adjusting resistance of each set. The internal resistance of each set becomes constant and the current of charge and discharge comes to be balanced by inserting the external resistance into the system and calculating the change of internal resistance.

  • PDF

Bending Mode Vibration Control of a Flexible Shaft Supported by a Hybrid Air-foil Magnetic Bearing (공기포일 및 자기 하이브리드 베어링으로 지지되는 연성축의 휨 모드 진동 제어)

  • Jeong, Se-Na;Ahn, Hyung-Joon;Kim, Seung-Jong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.791-791
    • /
    • 2009
  • Hybrid air-foil magnetic bearing combines two oil free bearing technologies to take advantage of the strengths of each bearing with minimizing each other weaknesses. This paper presents bending mode vibration control of a flexible shaft supported by the hybrid air-foil magnetic bearing. An experiment set-up of a flexible shaft supported by the hybrid air-foil magnetic bearing is built. In order to verify the effectiveness of the hybrid bearing, unbalance responses of the flexible shaft supported by three different bearings: air-foil, magnetic and hybrid bearings are compared. Effect of load sharing between air-foil and magnetic bearings are investigated through changing control gain and offset displacements of magnetic bearing.

  • PDF

A Review of Power Electronics Based Microgrids

  • Wang, Xiongfei;Guerrero, Josep M.;Blaabjerg, Frede;Chen, Zhe
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.181-192
    • /
    • 2012
  • The increased penetration of Distributed Energy Resources (DER) is challenging the entire architecture of conventional electrical power system. Microgrid paradigm, featuring higher flexibility and reliability, becomes an attractive candidate for the future power grid. In this paper, an overview of microgrid configurations is given. Then, possible structure options and control methods of DER units are presented, which is followed by the descriptions of system controls and power management strategies for AC microgrids. Finally, future trends of microgrids are discussed pointing out how this concept can be a key to achieve a more intelligent and flexible power system.

Design Considerations for Auto-Connected Multi-Pulse Rectiviers for High Power AC Motor Drives

  • ;Prasad N. Enjeti
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.5
    • /
    • pp.413-422
    • /
    • 1999
  • Auto-connected multipulse(12/24pulse) rectifier schemes are cost effective methods for reducing line current hamonics in PWM drive systems. Employing these schemes to enhance utility power quality requires careful attention to several design considerations In particular, excursion of dc-link voltage at no load, effect of pre-existing voltage distortion, impedance mismatches, unequal diode drops on rectifier current sharing and performance, are fully analyzed, Several corrective measures to improve the performance of 12/24­pulse rectifier systems are also discussed. Finally, experimental results on a 460V, 60Hz 400kVA commercial ASD, retrofitted with 12/24pulse rectifier systems are discussed in detail.

  • PDF

A Hybrid Energy Storage System Using a Superconducting Magnet and a Secondary Battery

  • ISE Toshifumi;YOSHIDA Takeshi;KUMAGAI Sadatoshi
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.534-538
    • /
    • 2001
  • Energy storage devices with high energy density as well as high power density are expected to be developed from the point of view of compensation of fluctuating load and generated power by distributed generations such as wind turbines, photovoltaic cells and so on. SMES (Superconducting Magnetic Energy Storage) has higher power density than other energy storage methods, and secondary batteries have higher energy density than SMES. The hybrid energy storage device using SMES and secondary batteries is proposed as the energy storage method with higher power and energy density, the sharing method of power reference value for each storage device, simulation and experimental results are presented.

  • PDF

Reliability Models for Redundant Systems Using Phase-type Distributions

  • Moon, Sinmyeong;Lie, Changhoon
    • Management Science and Financial Engineering
    • /
    • v.7 no.2
    • /
    • pp.73-90
    • /
    • 2001
  • This paper presents the reliability models for redundant systems composed of repairable components whose failure time and repair time distributions are phase-type. It is shown that the distribution of time to system failure is also phase-type. The dependency between components are considered and integrated into the model by the used of the rate adjustment factor. The phase-type representation is constructed for the system through algebraic operations on the parameters of components\` failure time and repair time distributions and the corresponding rate adjustment factors. Types of system structures considered are parallel, k-out-of-N system with load sharing scheme and standby system with operation priority.

  • PDF

Evaluation of Packet Loss Rate in Optical Burst Switching equipped with Optic Delay Lines Buffer

  • To, Hoang-Linh;Bui, Dang-Quang;Hwang, Won-Joo
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2012.05a
    • /
    • pp.166-167
    • /
    • 2012
  • High packet loss rate and impatience of messages passing through optical switches are essential characteristics in Optical Burst Switching system equipped with Optic Delay Lines buffer, which have not been solved efficiently yet by current existing models. In order to capture both effects, this paper introduces an analytical model from the viewpoint of classical queuing theory with impatient customers. We then apply it to evaluate and compare two wavelength-sharing cases, (1) all delay lines share a common wavelength resource and (2) each wavelength is associated with a number of delay lines. Our numerical results suggest to implement the first case because of lower packet loss rate for a fairly broad range of traffic load.

  • PDF

DSP-Based Digital Controller for Multi-Phase Synchronous Buck Converters

  • Kim, Jung-Hoon;Lim, Jeong-Gyu;Chung, Se-Kyo;Song, Yu-Jin
    • Journal of Power Electronics
    • /
    • v.9 no.3
    • /
    • pp.410-417
    • /
    • 2009
  • This paper represents a design and implementation of a digital controller for a multi-phase synchronous buck converter (SBC) using a digital signal processor (DSP). The multi-phase SBC has generally been used for a voltage regulation module (VRM) of a microprocessor because of its high current handling capability at a low output voltage. The VRM requires high control performance of tight output regulation, high slew rate, and load sharing capability of multiple converters. In order to achieve these requirements, the design and implementation of a digital control system for a multi-phase SBC are presented in this paper. The digital PWM generation, current sensing, and voltage and current controller using a DSP TMS320F2812 are considered. The experimental results are provided to show the validity of the implemented digital control system.

Improving Overall WMN Performance in Peak Times Using Load-sharing Aware Gateways

  • Vo, Hung Quoc;Dai, Tran Thanh;Hong, Choong-Seon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2007.05a
    • /
    • pp.855-857
    • /
    • 2007
  • In recent years, Wireless Mesh Network (WMN) is a compelling topic to many network researchers due to its low cost in deployment, ease and simplicity in installation and scalability and robustness in operation. In WMN, Gateway nodes (Access Point-AP) are in charge of steering the traffic from the external network (e.g. Internet...) to client devices or mesh clients. The limited bandwidth of wireless links between Gateways and intermediate mesh routers makes the Gateways becomes the bottleneck of the mesh network in both uplink stream and downlink stream. In this paper, we propose a mechanism to permit Gateways collaboratively work to manipulate the traffic to fit our network. They will move the traffic from congested links to the unused capacity on other links.

  • PDF

Distributed ECU System Design for High Speed and High Precision Control of a Marine Engine

  • Lee, Jong-Nyun
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.5
    • /
    • pp.534-538
    • /
    • 2010
  • Efficient control of a marine engine requires an engine control unit (ECU) system that handles fast and precise signal processes for in-coming and out-going signals from fast running engines. In order to handle these roles, the sequential control has been adapted in the ECU system in small and medium size ship engines, which has caused high production cost and complexity of the system. Hence, this paper is focused on developing an distributed ECU system for high speed and high precision control of a marine engine by efficiently combining a CPLD chip and a microprocessor. By sharing load at the MCU with the designed CPLD chip, we could achieve in driving a marine engine with high speed and precise control so that the ECU board has been simplified and its production cost has been reduced.