• 제목/요약/키워드: Load-Strain Relation

검색결과 111건 처리시간 0.024초

Incremental Damage Mechanics of Particle or Short-Fiber Reinforced Composites Including Cracking Damage

  • Cho, Young-Tae
    • Journal of Mechanical Science and Technology
    • /
    • 제16권2호
    • /
    • pp.192-202
    • /
    • 2002
  • In particle or short-fiber reinforced composites, cracking of the reinforcements is a significant damage mode because the cracked reinforcements lose load carrying capacity. This paper deals with an incremental damage theory of particle or short-fiber reinforced composites. The composite undergoing damage process contains intact and broken reinforcements in a matrix. To describe the load carrying capacity of cracked reinforcement, the average stress of cracked ellipsoidal inhomogeneity in an infinite body as proposed in the previous paper is introduced. An incremental constitutive relation on particle or short-fiber reinforced composites including progressive cracking of the reinforcements is developed based on Eshelby's (1957) equivalent inclusion method and Mori and Tanaka\`s (1973) mean field concept. Influence of the cracking damage on the stress-strain response of composites is demonstrated.

콘크리트 응력-변형률 관계에 기반한 철근콘크리트 부재의 처짐 산정 (Deflection Calculation Based on Stress-Strain Curve for Concrete in RC Members)

  • 최승원;김우
    • 대한토목학회논문집
    • /
    • 제30권4A호
    • /
    • pp.383-389
    • /
    • 2010
  • 현재 우리나라의 콘크리트구조설계기준은 강도설계법에 근간하고 있다. 강도설계법에 의해 휨부재를 설계할 경우, 콘크리트 응력-변형률 관계는 사용하중 상태에서 선형으로 가정하지만 이후 극한한계 상태까지에 대해서는 규정되어 있지 않다. 이로 인해 콘크리트구조설계기준에서는 처짐 및 균열폭 등의 산정에 대해 개별적인 규정을 두고 있다. 그러나 한계상태설계법에 근거한 EC에서는 재료에 대한 응력-변형률 관계를 규정하고 있다. 따라서 재료의 응력-변형률 관계로부터 휨강도 및 처짐 등을 직접 계산할 수 있다. 본 연구에서는 휨부재에 대하여 주어진 재료 모델을 바탕으로 평형방정식과 적합조건식을 적용하여 휨모멘트-곡률 관계를 계산하였다. 이로부터 휨강도 및 처짐을 산정하여 현행 콘크리트구조설계기준에 의한 값과 비교하였다. 해석 결과 재료 모델로부터 휨모멘트-곡률 관계를 통해 산정된 처짐은 실험 결과와도 비교적 잘 일치하고, 항복 이후의 처짐 계산도 가능한 것으로 나타났다.

에너지법에 의한 축대칭 디프드로잉의 해석 (An Analysis of Axisymmetric Deep Drawing by the Energy Method)

  • 양동열;이항수
    • 대한기계학회논문집
    • /
    • 제17권1호
    • /
    • pp.51-61
    • /
    • 1993
  • 본 연구에서는 에너지법으로 축대칭 박판성형 공정을 해석할 때, Lee와 Yang 이 제안한 방법을 적용함에 있어 굽힘효과를 효과적으로 고려할 수 있는 방법을 제안 하고 축대칭 컵드로잉 공정을 해석하여 본 이론의 타당성을 입증하고자 한다. 굽힘 효과는 박판소재를 몇개의 층(layer)으로 나눈 뒤, 각 층에서 소비되는 변형에너지를 합하여 전체 에너지를 최소화시킴으로써 고려하였다. 해석시 펀치 목부분과 다이목 부분에서의 접촉압력은 각각 균일한 분포를 갖는 것으로 가정하였다. 본 이론의 타 당성을 입증하기 위하여 계산결과를 실험치 및 탄소성 유한요소해석 결과와 비교하였 다.

고강도 재료에 대한 구형압입 물성평가법 (Property Evaluation Method Using Spherical Indentation for High-Yield Strength Materials)

  • 최영식;;이진행;이형일
    • 대한기계학회논문집A
    • /
    • 제39권11호
    • /
    • pp.1079-1089
    • /
    • 2015
  • 본 연구에서는 항복강도 1GPa 이상의 고강도재료에 대해 구형압입자를 이용한 물성평가법을 제시한다. 압입전산모사를 통해 하중-변위 관계를 응력-변형률 관계로 변환하는 네 압입변수에 대한 회귀식을 바탕으로, 고강도 물성평가용 프로그램을 작성했다. 이를 압입시험에 적용하면 단 한번의 하중-해중에서 얻어지는 데이터로 유효 응력-변형률곡선을 얻을 수 있다. 광범위한 재료들에 대해 구해진 물성치의 평균오차는 영률 0.3%, 항복강도 0.8 %, 변형경화지수 6.4 % 이내이다.

적층판으로 보강된 철근콘크리트보에 대한 해석적 연구 (Analytical Study of Reinforced Concrete Beams Strengthened with Fiber Reinforced Plastic Laminates)

  • 채승훈;강주원
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 한국공간정보시스템학회 2004년도 춘계 학술발표회 논문집 제1권1호(통권1호)
    • /
    • pp.206-211
    • /
    • 2004
  • This paper deals with the flexural strengthening of reinforced concrete beams by means of thin fiber reinforced plastic(FRP) laminas. This study focuses on modeling of structural of concrete bonded FRP laminate in flexural bending members. Used computational equation is derived by relation of stress and strain. The section analysis is based on experimental observations of a linear strain distribution in the cross section until failure, and a multi-linear moment-deflection curve that is divided into four regions, each terminated by a similarly numbered point. The load-deflection relationship in each region is assumed to be linear. The present model is validated to compare wit the experiment of 4-point bending tests of R/C rectangular beams strengthened with CFRP laminates, and has well predicted the moment-displacement relationships of members.

  • PDF

Hypoelastic modeling of reinforced concrete walls

  • Shayanfar, Mohsen A.;Safiey, Amir
    • Computers and Concrete
    • /
    • 제5권3호
    • /
    • pp.195-216
    • /
    • 2008
  • This paper presents a new hypoelasticity model which was implemented in a nonlinear finite element formulation to analyze reinforced concrete (RC) structures. The model includes a new hypoelasticity constitutive relationship utilizing the rotation of material axis through successive iterations. The model can account for high nonlinearity of the stress-strain behavior of the concrete in the pre-peak regime, the softening behavior of the concrete in the post-peak regime and the irrecoverable volume dilatation at high levels of compressive load. This research introduces the modified version of the common application orthotropic stress-strain relation developed by Darwin and Pecknold. It is endeavored not to violate the principal of "simplicity" by improvement of the "capability" The results of analyses of experimental reinforced concrete walls are presented to confirm the abilities of the proposed relationships.

平面應力狀態 에서 균열先端 의 小規模降伏 에 관한 有限要素解析 (Finite Element Analysis on the Small Scale Yielding of a Crack Tip in Plane Stress)

  • 임장근;맹주성;김병용
    • 대한기계학회논문집
    • /
    • 제7권3호
    • /
    • pp.270-277
    • /
    • 1983
  • Plastic plane stress solutions are given for a center cracked strip, characterized by the Ramberg-Osgood plastic index, under bi-axial tension. Using a power law hardening stress-strain relation, an incremental plasticity finite element formulation is developed, and simple formulation is given for computing J-integral with nodal displacements. The near tip angular distribution of von Mises effective stress doesn't differ significantly in magnitude according to the change of loading stress and bi-axial load combination factor. But, for smaller plastic index, the location of its maximum value moves vertically at a head of crack. J-integral value, in the plastic zone near crack tip, decreases with load combination factor for large and small plastic index.

강제 교각의 거동에 관한 연구 (A Study on the Structural Behavior of Welded Box Columns)

  • 김인한;손용석;엄진호;송준엽;권영봉
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1999년도 가을 학술발표회 논문집
    • /
    • pp.87-94
    • /
    • 1999
  • The structural behavior of welded steel box columns subjected to axial compression and combined load of axial and horizontal load is described. The nonlinear stress-strain relation of the material and residual stress resulted from welds were included in the analysis. Inelastic buckling analysis of hollow rectangular sections of various width-thickness and slenderness ratios was carried out using the semi-analytical and spline finite strip method to investigate the local and global bucking stress and mode interaction. The buckling stress was compared with test results and design curves. Post-buckling behavior was traced by the finite element program(ADINA) and compared with experimental results. The comparison showed that the ultimate stress can be used for the design purpose.

  • PDF

Concrete columns reinforced with Zinc Oxide nanoparticles subjected to electric field: buckling analysis

  • Arbabi, Amir;Kolahchi, Reza;Bidgoli, Mahmood Rabani
    • Wind and Structures
    • /
    • 제24권5호
    • /
    • pp.431-446
    • /
    • 2017
  • As concrete is most usable material in construction industry it's been required to improve its quality. Nowadays, nanotechnology offers the possibility of great advances in construction. In this study, buckling of horizontal concrete columns reinforced with Zinc Oxide (ZnO) nanoparticles is analyzed. Due to the presence of ZnO nanoparticles which have piezoelectric properties, the structure is subjected to electric field for intelligent control. The Column is located in foundation with vertical springs and shear modulus constants. Sinusoidal shear deformation beam theory (SSDBT) is applied to model the structure mathematically. Micro-electro-mechanic model is utilized for obtaining the equivalent properties of system. Using the nonlinear stress-strain relation, energy method and Hamilton's principal, the motion equations are derived. The buckling load of the column is calculated by Difference quadrature method (DQM). The aim of this study is presenting a mathematical model to obtain the buckling load of structure as well as investigating the effect of nanotechnology and electric filed on the buckling behavior of structure. The results indicate that the negative external voltage applied to the structure, increases the stiffness and the buckling load of column. In addition, reinforcing the structure by ZnO nanoparticles, the buckling load of column is increased.

후방압출 공정에서 금형의 반경반향 변형량을 통한 제품정밀도에 관한 연구 (Study on Accuracy of Product by Radial Deformation of Die in Backward Extrusion)

  • 이강희;박태식;박용복
    • 소성∙가공
    • /
    • 제12권5호
    • /
    • pp.498-503
    • /
    • 2003
  • The die for cold forging gets a very high axial load and radial pressure during processing and hence deforms considerably in the radial direction. This radial deformation of die becomes a important factor influencing the dimensional accuracy of a product. In order to obtain the product with highly accurate dimension, therefore, it is essential to acquire some information on elastic deformation of the die and the product. The study has been performed for the relation of the deformation between the die and the product in backward extrusion. The strain of the die has been given by the simple experiment using the strain gauges attached to the outer surface of the die. Also the history of the deformation of the die and the product has been given by the experiment and Lames' formula. The results has been compared with the previous another method. The study has given useful results for the deformation history of the die and the product through the experiment and Lame's formula in backward extrusion, which can be applied in the die design for the product with accurate dimension.