• Title/Summary/Keyword: Load-Settlement

Search Result 586, Processing Time 0.026 seconds

A parametric study of settlement and load transfer mechanism of piled raft due to adjacent excavation using 3D finite element analysis

  • Karira, Hemu;Kumar, Aneel;Hussain Ali, Tauha;Mangnejo, Dildar Ali;Mangi, Naeem
    • Geomechanics and Engineering
    • /
    • v.30 no.2
    • /
    • pp.169-185
    • /
    • 2022
  • The urbanization and increasing rate of population demands effective means of transportation system (basement and tunnels) as well as high-rise building (resting on piled foundation) for accommodation. Therefore, it unavoidable to construct basements (i.e., excavation) nearby piled foundation. Since the basement excavation inevitably induces soil movement and stress changes in the ground, it may cause differential settlements to nearby piled raft foundation. To understand settlement and load transfer mechanism in the piled raft due to excavation-induced stress release, numerical parametric studies are carried out in this study. The effects of excavation depths (i.e., formation level) relative to piled raft were investigated by simulating the excavation near the pile shaft (i.e., He/Lp=0.67), next to (He/Lp=1.00) and below the pile toe (He/Lp=1.33). In addition, effects of sand density and raft fixity condition were investigated. The computed results have revealed that the induced settlement, tilting, pile lateral movement and load transfer mechanism in the piled raft depends upon the embedded depth of the diaphragm wall. Additional settlement of the piled raft due to excavation can be account for apparent loss of load carrying capacity of the piled raft (ALPC). The highest apparent loss of piled raft capacity ALPC (on the account of induced piled raft settlement) of 50% was calculated in in case of He/Lp = 1.33. Furthermore, the induced settlement decreased with increasing the relative density from 30% to 90%. On the contrary, the tilting of the raft increases in denser ground. The larger bending moment and lateral force was induced at the piled heads in fixed and pinned raft condition.

The Analysis of Shaft Deformation for Evaluating the Bearing Capacity of IGM Sosketed Drilled Shaft (IGM에 근입된 말뚝의 지지력 해석을 위한 기준침하량 결정방법 제안)

  • Chun, Byung-Sik;Kim, Won-Cheul;Seo, Deok-Dong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.3
    • /
    • pp.17-30
    • /
    • 2004
  • In this study, a new formula of settlement at the head of IGM was suggested and the applicability of suggested formula was verified with field test results. This suggested formula was the function of the settlement at the shaft head and the elastic compression of shaft. The applicability of suggested formula was verified with the result of in-situ load test. Also, the bearing capacity of drilled shaft with the IGM's theory was compared with those of classical theories. The results showed that classical method showed smaller values of bearing capacity than those of field load test data. The results of analysis also showed that the suggested formula and IGM's theory were applicable for the estimation of bearing capacity with the increase of shaft settlement. Especially, settlement correction factor($k_m$), which reflects ground condition and load transfer characteristics, increases as the applying load and shaft deformation increase. This suggested formula was applicable for medium density or higher density of soil condition and $k_m=1$ means yielding load for firm soil condition.

  • PDF

Mechanical characteristics + differential settlement of CFG pile and cement-soil compacted pile about composite foundation under train load

  • Cheng, Xuansheng;Liu, Gongning;Gong, Lijun;Zhou, Xinhai;Shi, Baozhen
    • Geomechanics and Engineering
    • /
    • v.20 no.2
    • /
    • pp.155-164
    • /
    • 2020
  • In recent years, the stability, safety and comfort of trains has received increased attention. The mechanical characteristics and differential settlement of the foundation are the main problems studied in high-speed railway research. The mechanical characteristics and differential settlement of the foundation are greatly affected by the ground treatment. Additionally, the effects of train load and earthquakes have a great impact. The dynamic action of the train will increase the vibration acceleration of the foundation and increase the cumulative deformation, and the earthquake action will affect the stability of the substructure. Earthquakes have an important practical significance for the dynamic analysis of the railway operation stage; therefore, considering the impact of earthquakes on the railway substructure stability has engineering significance. In this paper, finite element model of the CFG (Cement Fly-ash Gravel) pile + cement-soil compacted pile about composite foundation is established, and manual numerical incentive method is selected as the simulation principle. The mechanical characteristics and differential settlement of CFG pile + cement-soil compacted pile about composite foundation under train load are studied. The results show: under the train load, the neutral point of the side friction about CFG pile is located at nearly 7/8 of the pile length; the vertical dynamic stress-time history curves of the cement-soil compacted pile, CFG pile and soil between piles are all regular serrated shape, the vertical dynamic stress of CFG pile changes greatly, but the vertical dynamic stress of cement-soil compacted pile and soil between piles does not change much; the vertical displacement of CFG pile, cement-soil compacted pile and soil between piles change very little.

Reliability analysis and evaluation of LRFD resistance factors for CPT-based design of driven piles

  • Lee, Junhwan;Kim, Minki;Lee, Seung-Hwan
    • Geomechanics and Engineering
    • /
    • v.1 no.1
    • /
    • pp.17-34
    • /
    • 2009
  • There has been growing agreement that geotechnical reliability-based design (RBD) is necessary for establishing more advanced and integrated design system. In this study, resistance factors for LRFD pile design using CPT results were investigated for axially loaded driven piles. In order to address variability in design methodology, different CPT-based methods and load-settlement criteria, popular in practice, were selected and used for evaluation of resistance factors. A total of 32 data sets from 13 test sites were collected from the literature. In order to maintain the statistical consistency of the data sets, the characteristic pile load capacity was introduced in reliability analysis and evaluation of resistance factors. It was found that values of resistance factors considerably differ for different design methods, load-settlement criteria, and load capacity components. For the total resistance, resistance factors for LCPC method were higher than others, while those for Aoki-Velloso's and Philipponnat's methods were in similar ranges. In respect to load-settlement criteria, 0.1B and Chin's criteria produced higher resistance factors than DeBeer's and Davisson's criteria. Resistance factors for the base and shaft resistances were also presented and analyzed.

Model Tests on the Bearing Capacity and Settlement of Footing Considering Scale Effect (Scale Effect를 고려한 기초의 지지력 및 침하량 산정을 위한 모형실험)

  • 정형식;김도열;김정호
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.343-354
    • /
    • 2003
  • The scale effect should be considered to determine the bearing capacity and settlement of footings from Plate-Load Test, because of the size difference between a footing and a loading plate. To analyze characteristics of bearing capacity and settlement according to the difference of loading plate sizes, model tests were performed with four different sizes of square plate, which are B=10, 15, 20 and 25cm, on five different kinds of subsoil. Based on the analyzed results, this paper also proposes a method of bearing capacity and settlement determination, where scale effect is considered depending on the mixing ratio of sand and clay. Until now, uneconomic constructions have been conducted because of unreasonable evaluation in estimating bearing capacity and settlement of footings from Plate-Load Test in fields. In the application of the formula proposed in this research to field problems, it is expected that evaluation of bearing capacity and settlement of footings can be more reliable and more economic construction can be achieved.

Numerical Investigation on Piled Raft Foundation on Sandy Soils (사질토 지반에 시공된 말뚝전면기초의 수치해석연구)

  • Ahn, Tae-Bong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.6
    • /
    • pp.67-72
    • /
    • 2012
  • Finite element method was used to compare un-piled and piled raft foundation behaviors on sandy soils in this study. The soil parameters were estimated from SPT tests of 25 boreholes. Based on these soil parameters, a finite element analysis was conducted on un-piled and piled raft foundations. For the un-piled raft, the normalized settlement parameter for raft sizes of $8m{\times}8m$ and $15m{\times}15m$ ranged from 1.02~1.15 and 0.64~0.81, respectively. The raft thickness affects differential settlement and bending moments, but has little effect on load sharing or maximum settlement. Pile spacing greatly affected the maximum settlement, the differential settlement, the bending moment in the raft, and the load shared by the piles, while the differential settlement, the maximum bending moment and the load sharing are not affected very much by increasing the pile lengths.

The Characteristic of Track Settlement : State of the Arts (궤도침하 특성 : State of the Arts)

  • Jang, Sun-Jae;Lim, Nam-Hyoung;Choi, Jin-Yu;Lee, Woo-Chul
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1672-1675
    • /
    • 2008
  • The track is an important component of rail structures. The characteristic of the track settlement must be confirmed in order to evaluate the stability of the track. It is effected by action load and the characteristic of the track material. This study investigates the mechanism of the track settlement and the effect of initial settlement and long-term settlement on the characteristic of the track settlement through literature survey. It tries to observe the future research direction of track settlement.

  • PDF

An Applicative Estimation of Safety Factors about Driven Pile Using the Results of Static Loading Test on the Ultimate State (극한상태의 정재하시험결과를 이용한 타입말뚝의 안전율 적용성 평가)

  • Ki, Wan-Seo;Park, Noh-Hwan;Kim, Sun-Hak
    • The Journal of Engineering Geology
    • /
    • v.19 no.4
    • /
    • pp.441-457
    • /
    • 2009
  • This study estimated ultimate load by the determination methods based on ultimate load, yield load and settlement using experimental data from static load tests that applied load to driven piles used in sandy grounds at home and overseas until failure appeared markedly. Estimated ultimate load was normalized with actually measured failure load, and was compared among the determination methods according to the characteristics of pile. In addition, I have identified to the determination methods suitable for estimating ultimate load, and reevaluated the safety factor when determining allowable load. From the results of this study were drawn conclusions as follows. Among ultimate loads estimated by the ultimate-load-based determination methods, the value interpreted by Chin's method tended to overestimate actual measurements, and B. Hansen 80% standard and the stability plot method were considered most reliable as their results were closest to actual measurements. According to the results of this study, in calculating the allowable load, if the safety factor to be applied to failing load obtained by the method of determining extreme load is converted to the safety factor applied to the Standards for Structure Foundation Design, a value larger than 3.0 should be applied except the B. Hansen 90% method, and a value larger than 2.0 should be applied in the methods of determining yield load. In addition, if the safety factor to be applied to load obtained by the settlement standard is converted based on safety factor 3.0 for extreme load, a value smaller than 3.0 should be applied to the total settlement standard and the net settlement standard.

Comparison of dynamic behavior of shallow foundations based on pile and geosynthetic materials in fine-grained clayey soils

  • Shariati, Mahdi;Azar, Sadaf Mahmoudi;Arjomand, Mohammad-Ali;Tehrani, Hesam Salmani;Daei, Mojtaba;Safa, Maryam
    • Geomechanics and Engineering
    • /
    • v.19 no.6
    • /
    • pp.473-484
    • /
    • 2019
  • In this paper, the geotechnical report of the Northern Fereshteh area in Tabriz is used and the characteristics of shallow foundation of a single pile and compared pile group and geogrid in terms of the settlement of a building foundation on clayey soil. Additionally, impacts of existing variables such as the number of geogrid layers, the length of the pile, and the depth of groundwater level affected by the dynamic load caused by the Taiwan Jiji earthquake via numerical analysis using PLAXIS software are examined. The results of fifty-four models indicated that the construction of a pile group with a diameter of 1 meter and a length of 14 meters significantly diminished the consolidation settlement of the soil in the Northern Fereshteh area, where the settlement value has been triggered by the load inflicted by earthquake. Moreover, the construction of four layers of geogrid at intervals of one meter led to a significant decrease in the settlement. Finally, after reaching a maximum depth, it had no reducing effects on the foundation settlement.

Cracking Behavior of Prestressed Concrete Cylinder Pipe (프리스트레스트 콘크리트 실린더의 균열거동 연구)

  • Chung, Chul-Hun;Kim, Jong-Suk;Song, Na-Young
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.6
    • /
    • pp.122-130
    • /
    • 2008
  • The cracking behavior of prestressed concrete members is important for the rational evaluation of PCC pipes. However, the test data on the cracking behavior of PCC pipes are very limited. The purpose of the present study is to investigate the cracking behavior of PCC pipes under different settlement conditions. In this paper, experimental test on the full scale model of PCC pipe was conducted and observed in order to study cracking load in PCC pipes. Based test and FEM analysis results, this paper also presents the cracking load prediction in PCC pipe. Based on the numerical analysis results performed in this research, the cracking behaviors of PCC pipe with the variation of the settlement conditions were evaluated.