• Title/Summary/Keyword: Load-Life Curve

Search Result 132, Processing Time 0.027 seconds

The Effects of Segmental Instability and Muscle Fatigue after Applying Sabilization Exercise Program In Degenerated Disc Disease Patients of Aged (노인 퇴행성디스크 환자의 안정화운동이 척추불안정과 피로도에 미치는 영향)

  • Kim, Hee-Ra
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.13 no.2
    • /
    • pp.12-20
    • /
    • 2007
  • The purpose of this study was designed to find out the effectiveness of vertebral segment instability, muscle fatigue response on lumbar spine after apply lumbosacral stabilization exercise program to 4 patients with chronic low back pain and for 12 weeks. In this study, the lumbar spine motion with blind by MedX test machine and the difference of instability to lumbar vertebra segments in flexion, extension test of standing position and spinal load test(Matthiass Test) by Spinal Mouse. The stabilization exercise program was applied 2 times a week for 12 weeks in hospital and 2 times a day for 20 minutes at home. The results of the present study were as follows: 1. Instability test of lumbar vertebra segment is 2 type differential angle test between vertebrae segment and loading test of spine(matthiass) by Spinal Mouse. It appeared to improve stability of segments in sagittal plane after applying program. So lumbar spine curve increased lordosis toward anterior and was improved of the lumbar spine flexibility in flexion and extension. Specially, in matthiass test, (-) value was increased between lumbar vertebra segment when was the load on spine. And so applying stability improved after program. 2. Fatigue response test(FRT) results, in male, was raised muscle fatigue rate during increase weight, on the other hand female appeared lower than male. As a results, lumbosacral stabilization exercise was aided to improvement of lumbar spine vertebra segments stabilization. Spine instability patients will have a risk when in lifting a load or working with slight flexion posture during the daily of living life and it is probably to increase recurrence rate. Thus, not only lumbar extension muscle strength but also stability of vertebra segments in lumbar spine may be very important.

  • PDF

The Effects of Segmental Instability and Muscle Fatigue after Stabilization Exercise Program in Degenerated Disc Disease Patients of Aged (노인 퇴행성디스크 환자의 안정화운동이 척추불안정과 피로도에 미치는 영향)

  • Kim, Hee-Ra
    • Journal of Korean Physical Therapy Science
    • /
    • v.13 no.4
    • /
    • pp.7-16
    • /
    • 2006
  • The purpose of this study was designed to find out the effectiveness of vertebral segment instability, muscle fatigue response on lumbar spine after apply lumbosacral stabilization exercise program to 4 patients with chronic low back pain and for 12 weeks. In this study, the lumbar spine motion with blind by MedX test machine and the difference of instability to lumbar vertebra segments in flexion, extension test of standing position and spinal load test(Matthiass Test) by Spinal Mouse. The stabilization exercise program was applied 2 times a week for 12 weeks in hospital and 2 times a day for 20 minutes at home. The results of the present study were as follows: 1. Instability test of lumbar vertebra segment is 2 type differential angle test between vertebrae segment and loading test of spine(matthiass) by Spinal Mouse. It appeared to improve stability of segments in sagittal plane after program. So lumbar spine curve increased lordosis toward anterior and was improved of the lumbar spine flexibility in flexion and extension. Specially, in matthiass test, ( - ) value was increased between lumbar vertebra segment when was the load on spine. And so stability improved after program. 2. Fatigue response test(FRT) results, in male, was raised muscle fatigue rate during increase weight, on the other hand female appeared lower than male. As a results, lumbosacral stabilization exercise was aided to improvement of lumbar spine vertebra segments stabilization. Spine instability patients will have a risk when in lifting a load or working with slight flexion posture during the daily of living life and it is probably to increase recurrence rate. Thus, not only lumbar extension muscle strength but also stability of vertebra segments in lumbar spine may be very important.

  • PDF

The Study of Fatigue Lifetime Evaluation on the Interconnect of semiconductor sensor according to the various materials (재료에 따른 반도체 센서 배선의 피로 수명 평가에 관한 연구)

  • Shim Jae-Joon;Ran Dong-seop;Ran Geun-Jo;Kim Tae-Hyung
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2005.10a
    • /
    • pp.283-288
    • /
    • 2005
  • Application of semiconductor sensors has widely spreaded into various industries because those have several merits like easy miniaturization and batch production comparison with previous mechanical sensors. But external conditions such as thermal and repetitive load have a bad effect on sensors's lifetime. Especially, this paper was focused on fatigue life of a interconnect made by various materials. Firstly we implemented the stress analysis for interconnect under thermal load and wording pressure. And the fatigue lifetime of each material was induced by Manson & Coffin Equation using the plastic stress-strain curve obtained by the plastic-elastic Finite Element Analysis.

  • PDF

Tribology Characteristics in 300 μm of Hexagonal Array Dimple Pattern

  • Choi, H. J.;Hermanto, A. S.;Kwon, S. H.;Kwon, S. G.;Park, J. M.;Kim, J. S.;Chung, S. W.;Chae, Y. H.;Choi, W. S.
    • Tribology and Lubricants
    • /
    • v.31 no.6
    • /
    • pp.308-315
    • /
    • 2015
  • In the tribological performance of materials, a textured surface reduces the friction coefficient and wear. This study investigates the effects of a pattern of 300 µm dimples in a hexagonal array on the tribological characteristics. Previous studies investigated 200 µm dimples by using a similar material and method. There are three frictional conditions based on the Stribeck curve: boundary friction, mixed friction, and fluid friction. In this experiment, we investigated the frictional characteristics by conducting frictional tests at sliding speeds ranging from 9.6 rpm to 143.3 rpm and a normal load ranging from 13.6 N to 92 N. We used a photolithography method to create dimples for surface texturing. We used five specimens with different dimple densities 10%, 15%, 20%, 25%, and 30% in this study. The dimple density on the surface area is one of the important factors affecting the friction characteristics. The duty number graph indicates a fully developed fluid friction regime. Fluid friction occurs at a velocity of 28.7-143.3 rpm. We observed the best performance at a dimple density of 10% and a dimple diameter of 300 µm in the hexagonal array, the lowest friction coefficient at 0.0037 with 9.6 rpm 9.6N load, and the maximum friction coefficient at 0.0267 with 143.3 rpm 92N load.

Rigid plastic analysis for the seismic performance evaluation of steel storage racks

  • Montuori, Rosario;Gabbianelli, Giammaria;Nastri, Elide;Simoncelli, Marco
    • Steel and Composite Structures
    • /
    • v.32 no.1
    • /
    • pp.1-19
    • /
    • 2019
  • The aim of the paper is the prediction of the seismic collapse mode of steel storage pallet racks under seismic loads. The attention paid by the researchers on the behaviour of the industrial steel storage pallets racks is increased over the years thanks to their high dead-to-live load ratio. In fact, these structures, generally made by cold-formed thin-walled profiles, present very low structural costs but can support large and expensive loads. The paper presents a prediction of the seismic collapse modes of multi-storey racks. The analysis of the possible collapse modes has been made by an approach based on the kinematic theorem of plastic collapse extended to the second order effects by means of the concept of collapse mechanism equilibrium curve. In this way, the dissipative behaviour of racks is determined with a simpler method than the pushover analysis. Parametric analyses have been performed on 24 racks, differing for the geometric layout and cross-section of the components, designed in according to the EN16618 and EN15512 requirements. The obtained results have highlighted that, in all the considered cases, the global collapse mechanism, that is the safest one, never develops, leading to a dangerous situation that must be avoided to preserve the structure during a seismic event. Although the studied racks follow all the codes prescriptions, the development of a dissipative collapse mechanism is not achieved. In addition, also the variability of load distribution has been considered, reflecting the different pallet positions assumed during the in-service life of the racks, to point out its influence on the collapse mechanism. The information carried out from the paper can be very useful for designers and manufacturers because it allows to better understand the racks behaviour in seismic load condition.

Study on the performance indices of low-strength brick walls reinforced with cement mortar layer and steel-meshed cement mortar layer

  • Lele Wu;Caoming Tang;Rui Luo;Shimin Huang;Shaoge Cheng;Tao Yang
    • Earthquakes and Structures
    • /
    • v.24 no.6
    • /
    • pp.439-453
    • /
    • 2023
  • Older brick masonry structures generally suffer from low strength defects. Using a cement mortar layer (CML) or steel-meshed cement mortar layer (S-CML) to reinforce existing low-strength brick masonry structures (LBMs) is still an effective means of increasing seismic performance. However, performance indices such as lateral displacement ratios and skeleton curves for LBMs reinforced with CML or S-CML need to be clarified in performance-based seismic design and evaluation. Therefore, research into the failure mechanisms and seismic performance of LBMs reinforced with CML or S-CML is imperative. In this study, thirty low-strength brick walls (LBWs) with different cross-sectional areas, bonding mortar types, vertical loads, and CML/S-CML thicknesses were constructed. The failure modes, load-carrying capacities, energy dissipation capacity and lateral drift ratio limits in different limits states were acquired via quasi-static tests. The results show that 1) the primary failure modes of UBWs and RBWs are "diagonal shear failure" and "sliding failure through joints." 2) The acceptable drift ratios of Immediate Occupancy (IO), Life Safety (LS), and Collapse Prevention (CP) for UBWs can be 0.04%, 0.08%, and 0.3%, respectively. For 20-RBWs, the acceptable drift ratios of IO, LS, and CP for 20-RBWs can be 0.037%, 0.09%, and 0.41%, respectively. Moreover, the acceptable drift ratios of IO, LS, and CP for 40-RBWs can be 0.048%, 0.09%, and 0.53%, respectively. 3) Reinforcing low-strength brick walls with CML/S-CML can improve brick walls' bearing capacity, deformation, and energy dissipation capacity. Using CML/S-CML reinforcement to improve the seismic performance of old masonry houses is a feasible and practical choice.

A comparative study of constant current control and adaptive control on electrode life time for resistance spot welding of galvanized steels (용융아연도금 강판 저항 점 용접 시 정전류 및 적응제어 적용에 따른 연속타점 특성 평가 및 고찰)

  • Seo, Jeong-Chul;Choi, Il-Dong;Son, Hong-Rea;Ji, Changwook;Kim, Chiho;Suh, Sung-Bu;Seo, Jinseok;Park, Yeong-Do
    • Journal of Welding and Joining
    • /
    • v.33 no.2
    • /
    • pp.47-55
    • /
    • 2015
  • With using adaptive control of the resistance spot welding machine, the advantage on electrode life time for galvanized steels has been addressed. This study was aimed to evaluate the electrode life time of galvanized steels with applying the constant current control and the adaptive control resistance spot welding process for a comparison purpose. The growth in diameter of electrode face was similar for both the constant current and the adaptive control up to 2000 welds. The button diameter was decreased with weld numbers, however, sudden increase in button diameter with use of the adaptive control after 1500 welds was observed. The peak load was continuously decreased with increasing number of welds for both the constant current and the adaptive control. The current compensation during a weld was observed with using the adaptive control after 1800 welds since the ${\beta}$-peak on dynamic resistance curve was detected at later weld time. The current compensation with adaptive control during resistance spot welding enhanced the nugget diameter at the faying interface of steel sheets and improved the penetration to thinner steel sheet.

A Study on Safety Estimation of Railroad Wheel (컨테이너 철도차륜의 안전성 평가에 관한 연구)

  • Lee, Dong-Woo;Kim, Jin-Nam;Cho, Seok-Swoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.4
    • /
    • pp.1178-1185
    • /
    • 2010
  • Recently, high speed of container freight cars is causing fatigue damage of wheel. Sudden failure accidents cause a lot of physical and human damages. Therefore, damage analysis for wheel prevents failure accident of container freight car. Wheel receives mechanical and thermal loads at the same time while rolling stocks are run. The mechanical loads applied to wheel are classified by the horizontal load from contact of wheel and rail in curve line section and by the vertical force from rolling stocks weight. Also, braking and deceleration of rolling stocks cause repeated thermal load by wheel tread braking. Specially, braking of rolling stocks is frictional braking method that brake shoe is contacted in wheel tread by high breaking pressure. Frictional heat energy occurs on the contact surface between wheel tread and brake shoe. This braking converts kinetic energy of rolling stocks into heat energy by friction. This raises temperature rapidly and generates thermal loads in wheel and brake shoe. There mechanical and thermal loads generate crack and residual stress in wheel. Wetenkamp estimated temperature distribution of brake shoe experimentally. Donzella proposed fatigue life using thermal stress and residual stress. However, the load applied to wheel in aforementioned most researches considered thermal load and mechanical vertical load. Exact horizontal load is not considered as the load applied to wheel. Therefore, above-mentioned loading methods could not be applied to estimate actual stress applied to wheel. Therefore, this study proposed safety estimation on wheel of freight car using heat-structural coupled analysis on the basis of loading condition and stress intensity factor.

Improvement of Fatigue Life with Local Reinforcement for Offshore Topside Module during Marine Transportation (해양플랫폼 탑사이드 모듈의 해상 운송 시 국부 보강을 통한 피로 수명 개선에 관한 연구)

  • Jang, Ho-Yun;Seo, Kwang-Cheol;Park, Joo-Shin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.2
    • /
    • pp.387-393
    • /
    • 2021
  • In this study, finite element analysis was performed to evaluate a method of increasing the fatigue life of the pipe connection structure commonly used in the topside structure of offshore platforms. MSC Patran/Nastran, a commercial analysis program, was used, and the critical structural model was selected from the global analysis. To realize the stress concentration phenomenon according to the load, modeling using 8-node solid elements was implemented. The main loads were considered to be two lateral loads and a tensile load on a diagonal pipe. To check the hotspot stress at the main location, a 0.01 mm dummy shell element was applied. After calculating the main stress at the 0.5-t and 1.5-t locations, the stress generated in the weld was estimated through extrapolation. In some sections, this stress was observed to be below the fatigue life that should be satisfied, and reinforcement was required. For reinforcement, a bracket was added to reduce the stress concentration factor where the fatigue life was insufficient without changing the thickness or diameter of the previously designed pipe. Regarding the tensile load, the stress in the bracket toe increased by 23 %, whereas the stress inside and outside of the pipe, which was a problem, decreased by approximately 8 %. Regarding the flexural load, the stress at the bracket toe increased by 3 %, whereas the stress inside and outside of the pipe, which was also a problem, decreased by approximately 48 %. Owing to the new bracket reinforcement, the stress in the bracket toe increased, but the S-N curve itself was better than that of the pipe joint, so it was not a significant problem. The improvement method of fatigue life is expected to be useful; it can efficiently increase the fatigue life while minimizing changes to the initial design.

Analysis of Life Cycle Costs of Railway Track : A Case Study for Ballasted and Concrete Track for High-Speed Railway (철도 궤도의 수명주기비용 분석 : 고속철도 자갈궤도와 콘크리트궤도 사례 연구)

  • Jang, Seung Yup
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.2
    • /
    • pp.110-121
    • /
    • 2016
  • In the decision-making, such as selection of structure, construction method, or time and scheme of maintenance, the evaluation of life-cycle cost(LCC) is of great importance. The maintenance cost occupy a large portion of the LCC of the railway track as well as the initial construction cost. Futhermore, the proportion of the maintenance cost is much higher in the ballasted track. Thus, the importance of the LCC evaluation is higher than in any other engineering structures. In this study, a LCC model that can consider various design parameters such as the type of track structure, annual traffic volume, axle load, train speed, and proportion of curve sections and engineering structures has been developed. Fundamental data for calculating costs also have been presented. Based on the model and data proposed, the trends in the variation of LCC according to the design parameters were examined and the most important design parameters in the LCC analysis of railway track were investigated. The results show that the proportion of renewal and operational costs is much higher in the ballasted track than in the concrete track, and the annual traffic volume and ballast taming period are most significant factors on the LCC of the ballasted track. On the contrary, it is revealed that the proportion of the initial construction costs in the concrete track is much higher, and the LCC of the concrete track is less sensitive to the traffic volume, train speed, and axle load.