• 제목/요약/키워드: Load width

검색결과 1,035건 처리시간 0.034초

금인레이 와동의 폭경이 응력분포와 변위에 미치는 영향에 관한 3차원 유한요소법적 연구 (A THREE-DIMENSIONAL FINITE ELEMENT ANALYSIS ON STRESS AND DISPLACEMENT RELATED TO ISTHMUS WIDTH OF GOLD INLAY CAVITY)

  • 황호길;임미경
    • Restorative Dentistry and Endodontics
    • /
    • 제19권2호
    • /
    • pp.384-408
    • /
    • 1994
  • The purpose of this study was to evaluate the fracture resistance of tooth restored with gold inlay. A profound understanding of the isthmus width factor, which is one of the several parameters of cavity designs, would facilitate the appropriate cavity preparation in a specific clinical situation. In this study, the cavities for gold inlay were prepared in maxillary left first premolar. A three-dimensional model was designed using I-DEAS program. The model was composed of 2515- nodes and 2172 isoparametric brick elements. In the model isthmus width was varied into 1/4, 1/3 and 1/2 of intercuspal width respectively, and numeric values of the material properties of enamel, dentin and gold was set. Three types of load : concentrated load, divided load and distributed load was 500N. The empty cavities in the model were also examined using divided load and distributed load. The three - dimensional Finite Element Method was used to analysis the displacement and stress distribution. The results were as follows : 1. All of the experimental models which were filled with gold inlay revealed similar direction of displacement to that of the natural tooth model under the same load type. But in the models with empty cavities, as the isthmus width increased, the degree of displacement increased in the case of divided load type. 2. All experimental models which were filled with gold inlay showed stress concentration at load points, but in the models with empty cavities at divided load type, as isthmus width increased, stress was concentrated at the comer of the pulpal floor. 3. In the models with empty cavities at divided load type, tooth fracture was expected regardless of isthmus width, but all experimental models which were filled with gold inlay after cavity preparation were not susceptible to fracture. 4. In all experimental models which were filled with gold inlay after cavity preparation, displacement patterns were similar under both concentrated and divided load types. In the models with empty cavities, a divided load resulted in a bucco-lingual cuspal displacemenat in both sides, but a distributed load resulted in a lingual displacement of the tooth.

  • PDF

금인레이 와동의 폭경에 따른 응력분포와 변위에 관한 유한요소법적 연구 (A FINITE ELEMENT ANALYSIS ON STRESS AND DISPLACEMENT ACCORDING TO ISTHMUS WIDTH OF GOLD INLAY CAVITY)

  • 신강석;조영곤;황호길
    • Restorative Dentistry and Endodontics
    • /
    • 제18권2호
    • /
    • pp.395-411
    • /
    • 1993
  • The purpose of this study was to examine the clear concept of the designs for cavity preparations. Among the several parameters in cavity designs, profound understanding of isthmus width factor would facilitate selection of the appropriate cavity preparation for a specific clinical situation. In this study, the cavities were prepared on maxillary first premolar and filled with gold inaly. A two - dimensional model was composed of 1037 - node triangle elements. In this model, isthmus was varied in width at 1/4, 1/3 and 1/2 of intercuspal width and material properties were given for four element groups, i.e., enamel, dentin, pulp and gold. The 500N occlusal load varied in direction and it was examined using three types of load : concentrated load, divided load and distributed load. The models were also examined with empty cavities using the devided load and distributed load. These models were analyzed the displacement and strees distribution by the two - dimensional Finite Element Method. The results were as follows : 1. All experimental models which filled with gold inlay after cavity preparation were similar direction of displacement with control model under same load type. But in the models with empty cavities, as isthmus width was wider, the degree of displacement was increased at same load type. 2. Among the experimental models which were filled with gold inaly after cavity preparation, the model II showed the least stress concentration under concentrated load and divided load. But in the models with empty cavities, the model III showed the largest stress concentration and tooth fracture is expected regardless isthmus width. 3. All experimental models showed similar displacement pattern beneath restorative material under a concentrated load. In the models with empty cavities, a divided load resulted in a lingual displacement of the lingual cusp, but a distributed load resulted in a buccal displacement of the lingual cusp. In regard to the above results, the restored models were stronger than empty models in respect to the bending moment and tensile stress. The empty models are expected to fracture regardless isthmus width. The safest isthmus width was 1/3 of intercuspal distance, which showed the least stress concentration in respect to the effect of stress distribution.

  • PDF

연속 철근콘크리트 슬래브 교량의 윤하중 분포폭에 관한 연구 (Wheel Load Distribution of Continous Reinforced Concrete Slab Bridge)

  • 신호상;오병환
    • 콘크리트학회지
    • /
    • 제10권4호
    • /
    • pp.135-143
    • /
    • 1998
  • 현행 AASHTO 및 AASHTO LRFD 설계기준에는 차선하중에 대한 윤하중분포폭을 차륜하중에 적용되는 윤하중분포폭의 2배를 적용하도록 규정하고 있다. 이에 반해 국내 도로교 표준시방서에는 차선하중에 대한 윤하중분포폭의 규정은 없는 실정이다. 본 연구에서는 연속 철근콘크리트 슬래브 교량에 대한 윤하중분포폭에 관한 연구를 수행하였다. 연속슬래브 교량의 윤하중분포폭에 영향을 미치는 인자들로는 지간길이, 교량폭, 단부보 및 지점조건이 있다. 이들 각 인자들에 대한 유한 요소 모델의 구성 및 해석을 통하여 연속 철근콘크리트 슬래브 교량의 합리적인 윤하중분포폭의 식을 제안하였다. 본 연구에서 제안된 윤하중분포폭의 식은 현행 도로교 표준시방서에 제시되어 있지 않은 철근콘크리트 연속 슬래브 교량의 보다 정확한 설계 및 합리적인 내하력 산정시 매우 효율적으로 사용될 것으로 사료된다.

고층의 주상복합건축물 계단폭과 수용인원 산정기준에 따른 피난효율의 비교 (Comparison of Evacuation Efficiency for Stair Width and Code for Occupant Load Calculation in High-rise Buildings)

  • 이양주;고경찬;박외철
    • 한국화재소방학회논문지
    • /
    • 제25권1호
    • /
    • pp.1-6
    • /
    • 2011
  • 고층건축물에서의 피난효율과 수용인원 산정기준의 문제점을 확인하기 위하여 피난 시뮬레이션을 수행하였다. 지상 39층 주상복합 건축물의 계단폭이 각각 1.2m, 1.5m, 1.8m일 때, 피난시간과 피난자수를 Simulex로 계산하였다. 소방법 기준으로 산정한 총수용인원은 실거주자의 2.3배, NFPA 101 인명구조코드 기준의 2.6배였다. 소방법 기준의 경우, 계단폭이 작을수록 증간층에서의 병목현상으로 인해 피난효율이 낮았지만, 실거주나 NFPA 기준에서는 피난효율이 높고 계단폭이 피난효율에 미치는 영향이 미미함을 확인하였다. 소방법 기준을 적용할 때 계단폭이 1.8m에서도 병목현상이 일어나지만, 실거주 또는 NFPA 기준을 적용할 때는 계단폭 1.2m에서도 안전한 것으로 나타 남에 따라 수용인원 산정관련 소방법 기준의 완화가능성에 대한 추가연구가 필요하다.

Analysis of shear lag effect in the negative moment region of steel-concrete composite beams under fatigue load

  • Zhang, Jinquan;Han, Bing;Xie, Huibing;Yan, Wutong;Li, Wangwang;Yu, Jiaping
    • Steel and Composite Structures
    • /
    • 제39권4호
    • /
    • pp.435-451
    • /
    • 2021
  • Shear lag effect was a significant mechanical behavior of steel-concrete composite beams, and the effective flange width was needed to consider this effect. However, the effective flange width is mostly determined by static load test. The cyclic vehicle loading cases, which is more practical, was not well considered. This paper focuses on the study of shear lag effect of the concrete slab in the negative moment region under fatigue cyclic load. Two specimens of two-span steel-concrete composite beams were tested under fatigue load and static load respectively to compare the differences in the negative moment region. The reinforcement strain in the negative moment region was measured and the stress was also analyzed under different loads. Based on the OpenSees framework, finite element analysis model of steel-concrete composite beam is established, which is used to simulate transverse reinforcement stress distribution as well as the variation trends under fatigue cycles. With the established model, effects of fatigue stress amplitude, flange width to span ratio, concrete slab thickness and shear connector stiffness on the shear lag effect of concrete slab in negative moment area are analyzed, and the effective flange width ratio of concrete slab under different working conditions is calculated. The simulated results of effective flange width are compared with calculated results of the commonly used specifications, and it is found that the methods in the specifications can better estimate the shear lag effect in concrete slab under static load, but the effective flange width in the negative moment zone under fatigue load has a large deviation.

Impact of adjacent excavation on the response of cantilever sheet pile walls embedded in cohesionless soil

  • Singh, Akshay Pratap;Chatterjee, Kaustav
    • Geomechanics and Engineering
    • /
    • 제30권3호
    • /
    • pp.293-312
    • /
    • 2022
  • Cantilever sheet pile walls having section thinner than masonry walls are generally adopted to retain moderate height of excavation. In practice, a surcharge in the form of strip load of finite width is generally present on the backfill. So, in the present study, influence of strip load on cantilever sheet pile walls is analyzed by varying the width of the strip load and distance from the cantilever sheet pile walls using finite difference based computer program in cohesionless soil modelled as Mohr-Coulomb model. The results of bending moment, earth pressure, deflection and settlement are presented in non-dimensional terms. A parametric study has been conducted for different friction angle of soil, embedded depth of sheet pile walls, different magnitudes and width of the strip load acting on the ground surface and at a depth below ground level. The result of present study is also validated with the available literature. From the results presented in this study, it can be inferred that optimum behavior of cantilever sheet pile walls is observed for strip load having width 2 m to 3 m on the ground surface. Further as the depth of strip load below the ground surface increases below the ground level to 0.75 times excavation height, the bending moment, settlement, net earth pressure and deflection decreases and then remains constant.

AFM을 이용한 미세 패턴 가공 시 접촉 하중에 따른 선폭 변화에 대한 연구 (Investigation on the Effect of Contact Load on Fine Pattern Fabrication by AFM)

  • 조상범;김대은
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.502-505
    • /
    • 2005
  • To overcome some of the limitations in the conventional photolithography technique, MC-SPL which has advantages such as flexibility and high speed was developed in the past. To make a fine pattern using MC-SPL, there are many variables to control, for example, applied load, scribing speed, chemical etching condition, and etc. In this work, the effect of contact load on the width of the pattern was investigated. The load not only influences the width of the pattern but it also affects the wear of the probe tip. It was found that it is beneficial to load the tip in two stages. Futhermore, the experimental results showed that the pattern width was more sensitive to the initial contact force.

  • PDF

표면웨이브가 존재하는 유한폭 슬라이더 베어링의 지지하중 특성에 관한 연구 (Study on the Load-Carrying Capacity of Finite-Width Slider Bearing with Wavy Surface)

  • 신정훈;이기천;박종원;강보식;김경웅
    • Tribology and Lubricants
    • /
    • 제29권1호
    • /
    • pp.13-18
    • /
    • 2013
  • Slider bearing is a widely used load-carrying element in the industry. While a large number of studies have investigated the effect of overall surface curvature, very few have considered sinusoidal surface. Recently, consideration of surface roughness/waviness or intentional wave design has been identified as an important issue in the manufacture of hard disk driver, mechanical seal, hydraulic machine, and etc. This study investigated the load-carrying capacity of a finite-width slider bearing with a wavy surface. Film thickness ratios, length-width ratio, ambient pressure, amplitude, and partial distribution were selected as the simulation parameters. The calculation results showed that the load-carrying capacity rapidly varied at small film thickness ratio, but the waviness near the area of minimum film thickness made much more influence with an increase in film thickness ratio. As the length-width ratio of bearing was increased, ambient pressure became more influential at small film thickness ratios. Furthermore a particular partial distribution of the wavy area led to higher load-carrying capacity than did the whole distribution. Consequently, the results of this study are expected to be of use in surface micro-machining of finite-width slider bearings.

Effects of Stud Spacing, Sheathing Material and Aspect-ratio on Racking Resistance of Shear Walls

  • Jang, Sang Sik
    • Journal of the Korean Wood Science and Technology
    • /
    • 제30권3호
    • /
    • pp.97-103
    • /
    • 2002
  • This study was carried out to obtain basic information on racking resistance of shear walls and the factors affecting racking resistance of shear walls. Shear walls constructed by larch lumber nominal 50 mm × 100 mm framing and various sheathing materials were tested by applying monotonic and cyclic load functions. Shear walls with various stud spacing such as 305 mm, 406 mm, and 610 mm were tested under both of monotonic and cyclic loads and shear walls with various aspect (height-width) ratios were tested under cyclic load functions. The effect of hold-down connectors in shear walls was also tested under cyclic load functions. Racking resistance of shear walls has very close linear relation with stud spacing and width of shear walls. The ultimate racking strength of shear walls was reached at around or before the displacement of 20 mm. It was proposed in this study that the minimum racking strength and minimum width for shear wall be 500 kgf and 900 mm, respectively. Load-displacement curves obtained by racking tests under monotonic load functions can be represented by three straight line segments. Under cyclic load functions, envelope curves can be divided into three sections that can be represented by straight lines and the third section showed almost constant or decreasing slope.

그루브형상을 고려한 빗살무늬저널베어링의 유한요소해석 (An Analysis of Herringbone Groove Journal Bearing Considering Groove Shape)

  • 신동우;임윤철
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1999년도 제29회 춘계학술대회
    • /
    • pp.162-169
    • /
    • 1999
  • Herringbone groove journal bearing (HGJB) is developed to improve the static and dynamic performances of hydrodynamic journal bearing. Conventional studies on HGJB were based on the Narrow Groove theory assuming that the number of grooves approaches infinity. In this study, an oil lubricated HGJB is analyzed using Finite Element Method. Load carrying capacity, attitude angle, stiffness and damping coefficients are obtained numerically for various bearing configurations especially for the inclined width ratio and asymmetric ratio and compared with the results obtained using Finite Volume Method. The bearing load and stability characteristics are dependent on geometric parameters such as inclined width ratio, asymmetric ratio, groove depth ratio, groove width ratio, groove angle.

  • PDF