Browse > Article
http://dx.doi.org/10.12989/gae.2022.30.3.293

Impact of adjacent excavation on the response of cantilever sheet pile walls embedded in cohesionless soil  

Singh, Akshay Pratap (Department of Civil Engineering, Indian Institute of Technology Roorkee)
Chatterjee, Kaustav (Department of Civil Engineering, Indian Institute of Technology Roorkee)
Publication Information
Geomechanics and Engineering / v.30, no.3, 2022 , pp. 293-312 More about this Journal
Abstract
Cantilever sheet pile walls having section thinner than masonry walls are generally adopted to retain moderate height of excavation. In practice, a surcharge in the form of strip load of finite width is generally present on the backfill. So, in the present study, influence of strip load on cantilever sheet pile walls is analyzed by varying the width of the strip load and distance from the cantilever sheet pile walls using finite difference based computer program in cohesionless soil modelled as Mohr-Coulomb model. The results of bending moment, earth pressure, deflection and settlement are presented in non-dimensional terms. A parametric study has been conducted for different friction angle of soil, embedded depth of sheet pile walls, different magnitudes and width of the strip load acting on the ground surface and at a depth below ground level. The result of present study is also validated with the available literature. From the results presented in this study, it can be inferred that optimum behavior of cantilever sheet pile walls is observed for strip load having width 2 m to 3 m on the ground surface. Further as the depth of strip load below the ground surface increases below the ground level to 0.75 times excavation height, the bending moment, settlement, net earth pressure and deflection decreases and then remains constant.
Keywords
cantilever sheet pile walls; cohesionless soil; embedded depth; FLAC2D; numerical analysis; strip load;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 El Sawwaf, M. (2010), "Experimental and numerical study of strip footing supported on stabilized sand slope", Geotech. Geolog. Eng., 28, 311-323. https://doi.org/10.1007/s10706-009-9293-9.   DOI
2 Gazan, S. (2011), "Normalized relationships for depth of embedment of sheet pile walls and soldier pile walls in cohesionless soils", Soil. Found., 51(3), 559-564. https://doi.org/10.3208/sandf.51.559.   DOI
3 Georgiadis, M. and Anagnostopoulos, C. (1998), "Lateral pressure on sheet pile walls due to strip load", J. Geotech. Geoenviron. Eng., 124(1), 95-98. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:1(95).   DOI
4 Ghadrdan, M., Shaghaghi, T. and Tolooiyan, A. (2020), "Sensitivity of the stability assessment of a deep excavation to the material characterisations and analysis methods", Geomech. Geophys. Geo-Energy Geo-Resour., 6(59), 1-14. https://doi.org/10.1007/s40948-020-00186-6.   DOI
5 Krey, H. (1936), Erddruck, 5th Edition, Erdwiderstand, Berlin.
6 Nguyen, T.S. and Likitlersuang, S. (2021), "Influence of the spatial variability of soil shear strength on deep excavation: A case study of a bangkok underground MRT station", Int. J. Geomech., 21(2), 04020248-1-12. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001914.   DOI
7 Padfield, C.J. and Mair, R.J. (1984), "Design of retaining walls embedded in stiff clays", Report 104, Construction Industry Research and Information Association (CIRIA), London, UK.
8 Conti, R., Viggiani, G.M.B. and Buralid'Arezzo, F. (2014), "Some remarks on the seismic behaviour of embedded cantilevered retaining walls", Geotechnique, 64(1), 40-50. https://doi.org/10.1680/geot.13.P.031.   DOI
9 Singh, A.P. and Chatterjee, K. (2022a), "Seismic analysis of cantilever sheet pile walls with strip load for any lateral deformation", Int. J. Geomech., 22(5), 04022039-1-11. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002352.   DOI
10 Qu, H., Li, R., Hu, H., Jia, H. and Zhang, J. (2016), "An approach of seismic design for sheet pile retaining wall based on capacity spectrum method", Geomech. Eng., 11(2), 309-323. https://doi.org/10.12989/gae.2016.11.2.309.   DOI
11 Singh, A.P. and Chatterjee, K. (2020a), "A simplified method for seismic design of cantilever sheet pile walls under infinite uniform surcharge load", Int. J. Geomech., 20(9), 04020139-1_04020139-11. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001764.   DOI
12 Singh, A.P. and Chatterjee, K. (2022b), "The influence of strip load on the seismic design of cantilever sheet pile walls: A simplified analytical solution", Bull. Earthq. Eng., 1-22. https://doi.org/10.1007/s10518-022-01409-9.   DOI
13 Nucor Skyline (2017), Technical Product Manual, New Jersey, USA. https://www.nucorskyline.com.
14 Samadhiya, N.K. (2019), "Evaluation of model sheet pile wall adjacent to a strip footing-An experimental investigation", Int. J. Geotech. Eng., 14(7), 828-835. https://doi.org/10.1080/19386362.2019.1581459.   DOI
15 Singh, A.P. and Chatterjee, K. (2020b), "Ground settlement and deflection response of cantilever sheet pile wall subjected to surcharge loading", Ind. Geotech. J., 50(4), 540-549. https://doi.org/10.1007/s40098-019-00387-1.   DOI
16 Singh, A.P. and Chatterjee, K. (2020c), "Influence of soil type on static response of cantilever sheet pile walls under surcharge loading: a numerical study", Arab. J. Geosci., 13(3), 138-1-11. https://doi.org/10.1007/s12517-020-5170-x.   DOI
17 Singh, A.P. and Chatterjee, K. (2020d), "Lateral earth pressure and bending moment on sheet pile walls due to uniform surcharge", Geomech. Eng., 23(1), 71-83. https://doi.org/10.12989/gae.2020.23.1.071.   DOI
18 Singh, A.P. and Chatterjee, K. (2021a), "A displacement based approach for seismic analysis and design of cantilever sheet pile walls under surcharge loading", Comput. Geotech., 140, 104481-1-11. https://doi.org/10.1016/j.compgeo.2021.104481.   DOI
19 Singh, A.P. and Chatterjee, K. (2021b), "Effect of soil-wall friction angle on behaviour of sheet pile wall under surcharge loading", Proc. Nat. Acad. Sci., India Section A: Phys. Sci., 91(1), 169-179. https://doi.org/10.1007/s40010-020-00657-1.   DOI
20 Gaba, A., Hardy, S., Doughty, L., Powrie, W. and Selemetas, D. (2017), Guidance on Embedded Retaining Wall Design, CIRIA C760, London, UK.
21 Jiang, S., Du, C. and Sun, L. (2018), "Numerical analysis of sheet pile wall structure considering soil-structure interaction", Geomech. Eng., 16(3), 309-320. https://doi.org/10.12989/gae.2018.16.3.309.   DOI
22 Krabbenhoft, K. (2019), "Plastic design of embedded retaining walls", Proc. Inst. Civil Eng.-Geotech. Eng., 172(2), 131-144. https://doi.org/10.1680/jgeen.17.00151.   DOI
23 Wolf, J.P. and Song, C. (2002), "Some cornerstones of dynamic soil-structure interaction", Eng. Struct., 24(1), 13-28. https://doi.org/10.1016/S0141-0296(01)00082-7.   DOI
24 Steenfelt, J.S. and Hansen, B. (1984), "Sheet pile design earth pressure for strip load", J. Geotech. Eng., 110(7), 976-986. https://doi.org/10.1061/(ASCE)0733-9410(1984)110:7(976).   DOI
25 Sudani, G.A., Brake, N. and Jao, M. (2015), "Stability of footings adjacent to pile walls", Int. J. Geomech., 15(6), 04015006-1-11. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000480.   DOI
26 Terzaghi, K. (1954), "Anchored bulkheads", Trans., 119, 1243-1324. https://doi.org/10.1061/TACEAT.0007100.   DOI
27 El-Emam, M. and Touqan, M. (2020), "Experimental modeling of strip footing adjacent to non-yielding retaining wall", Innov. Infrastr. Solution., 5(2), 1-17. https://doi.org/10.1007/s41062-020-00288-w.   DOI
28 Ahmad, H., Hoseini, M.H., Mahboubi, A., Noorzad, A. and Zamanian, M. (2021), "Effect of sheet pile wall on the load-settlement behaviour of square footing nearby excavation", Geomech. Geoeng., 1-19. https://doi.org/10.1080/17486025.2021.2019320.   DOI
29 Bilgin, O. (2010), "Numerical studies of anchored sheet pile wall behavior constructed in cut and fill conditions", Comput. Geotech., 37, 399-407. https://doi.org/10.1016/j.compgeo.2010.01.002.   DOI
30 Beygi, M., Vali, R., Porhoseini, R., Keshavarz, A. and Maleksaeedi, E. (2021), "The effect of rotational stiffness on the behaviour of retaining wall", Int. J. Geotech. Eng., 15(7), 845-856. https://doi.org/10.1080/19386362.2018.1517927.   DOI
31 Bowles, J.E. (2012), Foundation Analysis and Design, 5th Edition, McGraw Hill, New York.
32 Callisto, L. (2014), "Capacity design of embedded retaining structures", Geotechnique, 64(3), 204-214. https://doi.org/10.1680/geot.13.P.091.   DOI
33 Caltabiano, S., Cascone, E. and Maugeri, M. (2012), "Static and seismic limit equilibrium analysis of sliding retaining walls under different surcharge conditions", Soil Dyn. Earthq. Eng., 37, 38-55. https://doi.org/10.1016/j.soildyn.2012.01.015.   DOI
34 Hazzar, L., Hussien, M.N. and Karray, M. (2020), "Two-dimensional modelling evaluation of laterally loaded piles based on three-dimensional analyses", Geomech. Geoeng., 15(4), 263-280. https://doi.org/10.1080/17486025.2019.1640897.   DOI
35 Ahmadi, A. and Ahmadi, M.M. (2019), "Three-dimensional numerical analysis of corner effect of an excavation supported by ground anchors", Int. J. Geotech. Eng., 1-13. https://doi.org/10.1080/19386362.2019.1682349.   DOI
36 Callisto, L. and Soccodato, F.M. (2010), "Seismic design of flexible cantilevered retaining walls", J. Geotech. Geoenviron. Eng., 136(2), 344-354. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000216.   DOI
37 Chowdhury, S.S., Deb, K. and Sengupta, A. (2016), "Effect of fines on behavior of braced excavation in sand: Experimental and numerical study", Int. J. Geomech., 16(1), 04015018-1-04015018-13. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000487.   DOI
38 Conti. R. and Viggiani. G.M.B. (2013), "A new limit equilibrium method for the pseudostatic design of embedded cantilevered retaining walls", Soil Dyn. Earthq. Eng., 50, 143-150. https://doi.org/10.1016/j.soildyn.2013.03.008..   DOI
39 Doubrovskya, M.P. and Meshcheryakov, G.N. (2015), "Physical modeling of sheet piles behavior to improve their numerical modeling and design", Soil. Found., 55(4), 691-702. https://doi.org/10.1016/j.sandf.2015.06.003.   DOI
40 Blum, H. (1931), Einspannungs Verhaeltnisse Bei Bohlwerken, W. Ernst and Sohn, Berlin.
41 Conte, E., Troncone, A. and Vena, M. (2017), "A method for the design of embedded cantilever retaining walls under static and seismic loading", Geotechnique, 67(12), 1081-1089. https://doi.org/10.1680/jgeot.16.P.201.   DOI
42 Day, R.A. (1999), "Net pressure analysis of cantilever sheet pile walls", Geotechnique, 49(2), 231-245. https://doi.org/10.1680/geot.1999.49.2.231.   DOI
43 Hsiung, B.C.B., Likitlersuang, S., Phan, K.H. and Pisitsopon, P. (2021), "Impacts of the plane strain ratio on excavations in soft alluvium deposits", Acta Geotechnica, 16, 1923-1938. https://doi.org/10.1007/s11440-020-01115-3.   DOI
44 Itasca (2016), User's Guide for FLAC2D, Version 8.0, Itasca Consulting Group, Minneapolis, Minnesota, U.S.A.
45 Jao, M., Ahmed, F., Sudani, G., Nguyen, T.T.M. and Wang, M.C. (2017), "Interaction between strip footings and sheet pile walls", Elec. J. Geotech. Eng., 22(6), 1655-1674.
46 King, G.J.W. (1995), "Analysis of cantilever sheet-pile walls in cohesionless soil", J. Geotech. Eng., 121(9), 629-635. https://doi.org/10.1061/(ASCE)0733-9410(1995)121:9(629).   DOI