• Title/Summary/Keyword: Load power factor

Search Result 847, Processing Time 0.05 seconds

Evaluation of the Performance Test Load through the Estimation of Vertical Loads on Vibration-Proof Fastening Systems (방진체결장치에 작용하는 수직하중 평가를 통한 성능시험하중 평가)

  • Yang, Sin Chu
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.6
    • /
    • pp.777-784
    • /
    • 2016
  • In this study, regulation of the performance test load of a vibration-proof fastening system used in urban railways was established through evaluation of the loads that it bears in the field. In order to investigate the range of the dynamic stiffness of the vibration-proof fastening system, dynamic stiffness tests were carried out for three types of vibration-proof fastening system that can be domestically supplied. Train and track interaction analyses in the frequency domain were carried out to evaluate the dynamic wheel loads. The track irregularity, which is a very important input factor in train and track interaction analysis, was considered as a PSD (Power Spectral Density) function, which was derived based on the measured data. The loads on the vibration-proof rail fastening system were evaluated considering various operating conditions in the urban railway. Regulation of the performance test load of the vibration-proof rail fastening system was established based on the evaluated loads.

Evaluation of Shape Parameter Effect on the J-R Curve of Curved CT Specimen Using Limit Load Method (한계하중법을 이용한 Curved CT 시험편의 파괴저항곡선에 미치는 형상변수 영향 평가)

  • Shin, In Hwan;Park, Chi Yong;Seok, Chang Sung;Koo, Jae Mean
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.7
    • /
    • pp.757-764
    • /
    • 2014
  • In this study, the effect of shape parameters on the J-R curves of curved CT specimens was evaluated using the limit load method. Fracture toughness tests considering the shape factors L/W and $R_m/t$ of the specimens were also performed. Thereafter, the J-R curves of the curved CT specimens were compared using the J-integral equation proposed in the ASTM (American Society for Testing and Materials) and limit load solution. The J-R curves of the curved CT specimens were also compared with those of the CWP (curved wide plate), which is regarded to be similar to real pipe and standard specimens. Finally, the effectiveness of the J-R curve of each curved CT specimen was evaluated. The results of this study can be used for assessing the applicability of curved CT specimens in the accurate evaluation of the fracture toughness of real pipes.

A Study on the Utility Interactive Photovoltaic System Using a Chopper and PWM Voltage Source Inverter for Air Conditioner a Clinic room (병실 냉.난방을 위한 초퍼와 PWM 전압형 인버터를 이용한 계통 연계형 태양광 발전시스템에 관한 연구)

  • Hwang, L.H.;Na, S.K.
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.2
    • /
    • pp.360-369
    • /
    • 2008
  • The solar cells should be operated at the maximum power point because its output characteristics were greatly fluctuated on the variation of insolation, temperature and load. It is necessary to install an inverter among electric power converts by means of the output power of solar cell is DC. The inverter is operated supply a sinusoidal current and voltage to the load and the interactive utility line. In this paper, the proposes a photovoltaic system is designed with a step up chopper and single phase PWM voltage source inverter. Synchronous signal and control signal was processed by one-chip microprocessor for stable modulation. The step up chopper is operated in continuous mode by adjusting the duty ratio so that the photovoltaic system tracks the maximum power point of solar cell without any influence on the variation of insolation and temperature for solar cell has typical dropping character. The single phase PWM voltage source inverter is consists of complex type of electric power converter to compensate for the defect, that is, solar cell cannot be develop continuously by connecting with the source of electric power for ordinary using. It can be cause the efect of saving electric power, from 10 to 20%. The single phase PWM voltage source inverter operates in situation, that its output voltage is in same phase with the utility voltage. The inverter are supplies an ac power with high factor and low level of harmonics to the load and the utility power system.

A Study on Performance Reliability Analysis Device of Primary Battery (1차 전지의 성능 신뢰도 분석 장치에 관한 연구)

  • Kim, Yon Soo;Chung, Young-Bae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.37 no.2
    • /
    • pp.70-76
    • /
    • 2014
  • In industrial situation, electronic and electro-mechanical systems have been using different type of batteries in rapidly increasing numbers. These systems commonly require high reliability for long periods of time. Wider application of battery for low-power design as a prime power source requires us knowledge of failure mechanism and reliability of batteries in terms of load condition, environment condition and other explanatory variables. Battery life is an important factor that affects the reliability of such systems. There is need for us to understand the mechanism leading to the failure state of battery with performance characteristic and develop a method to predict the life of such battery. The purpose of this paper is to develope the methodology of monitoring the health of battery and determining the condition or fate of such systems through the performance reliability to predict the remaining useful life of primary battery with load condition, operating condition, environment change in light of battery life variation. In order to evaluate on-going performance of systems and subsystems adopting primary batteries as energy source, The primitive prototype for performance reliability analysis device was developed and related framework explained.

High-Speed BLDC Motor Design for Suction Fan and Impact on the Loss caused by Core Welding

  • Hong, Hyun-Seok;Kim, In-Gun;Lee, Ho-Joon;Go, Sung-Chul;Lee, Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.126-133
    • /
    • 2017
  • This paper deals with the effects of welding, which is done to fix the stator stack, on a motor in case of fabricating a prototype motor that is manufactured in a small quantity. In the case of a small motor, the stator is designed and fabricated with the segmented core as a way to raise the fill factor of winding wire to the utmost within a limited size. In case of fabrication by welding both inside and outside of the stator in order to fix the segmented-core stator, the effects of stack are ignored, and the eddy current loss occurs. This paper performed the no-load test on an IPM-type BLDC motor for driving the suction fan of a vacuum cleaner, which was manufactured by using a segmented-core stator. As a result of the test, it was found that input power more than expected was supplied. To analyze the effects of welding by using the finite element analysis method and verify them experimentally, a stator was re-manufactured by bonding, and input power supplied during the no-load test was compared.

A Study on Analysis Model for Economic Evaluation of Battery Energy Storage System (전지전력저장시스템의 경제성 평가를 위한 분석모델의 연구)

  • Kim, Eung-Sang;Kim, Ho-Young;Ko, Yo;Rim, Seong-Jeong;Kim, Jae-Chul
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.10 no.5
    • /
    • pp.75-82
    • /
    • 1996
  • The Battery Energy Storage System(BESS) can help the load factor improved by discharging the battery energy when the load is peak in the daytime. BESS has the advantages such as spinning reserve, control of voltage and frequency, deferment of investment for generation and transmission capacity construction, and reliability improvement of utility power service. To develop BESS and to apply it to Korea's power system, economic evaluation must be preceded. In this paper, we analyzed the investment costs, by modifying and complementing the Sysplan Model, through the economic assessment.

  • PDF

Operational Characteristic Analysis and Proposal of Senseless MPPT Control Scheme for PV Generation System (PV Output Senseless MPPT Control의 제안 및 운전특성 분석)

  • Choi, Jong-Ho;Lee, Dong-Han;Kim, Jong-Hyun;Kim, Jae-Ho;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1157-1158
    • /
    • 2006
  • The key of this study is the technical development to maximize electric energy production through PV generation system. Under a conventional MPPT control method, both input voltage and input current coming out from PV array had to be feed backed. Then, the system has complex structure and may fail to track Maximum Power Point of PV array when weather conditions changed urgently. A PV output senseless MPPT control for PV generation system is possible to solve the mentioned above. The best advantage is that the current flowing into load is the only one considerable factor. In case of a huge photovoltaic generation system, it can be operated much more safely than a conventional system. In this paper, a novel PV output senseless MPPT control for the PV generation system was proposed and applied to the manufactured system and the experimental results were shown. Authors are sure that it is the most useful method to maximize power from photovoltaic system with only a feedback of load current.

  • PDF

Basic study on Eco-industrial Park utilizing thermal effluents as heat source (온배수를 열원으로 활용하는 생태산업단지 조성에 관한 기초 연구)

  • KIM, Dong-Kyu;KANG, Dae-Seok;CHUNG, Yong-Hyun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.21 no.3
    • /
    • pp.400-408
    • /
    • 2009
  • The purpose of this study is to know the concept of Eco-industrial Park and How to use the thermal effluents from power plants. Thermal effluents, which use sea water for cooling, from power plants have been discharged with about $6{\sim}7^{\circ}C$ higher temperature than near sea area. Therefore, it could effect on the marine ecosystem as a external pressure factor that increase the artificial thermal load in near sea area. The applications of thermal effluents had been surveyed through the several internal and external cases for utilizing heat sources and reducing the thermal load. As the precedence research for applying, the amount of heat sources of thermal effluents was evaluated. When the thermal effluents was fully applied in heat sources and available heat, assume that use heating season by 12 hours a day of demanded available heat, it was possible to calculate total 198 Tcal of energy saving.

Steady-State Analysis of ZVS and NON-ZVS Full-Bridge Inverters with Asymmetrical Control for Induction Heating Applications

  • Yachiangkam, Samart;Sangswang, Anawach;Naetiladdanon, Sumate;Koompai, Chayant;Chudjuarjeen, Saichol
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.544-554
    • /
    • 2015
  • This paper presents a steady-state operation analysis of full-bridge series-resonant inverters focusing on the distorted load current due to low-quality-factor resonant circuits in induction heating and other applications. The regions of operation based on the zero-voltage switching (ZVS) and non-zero-voltage switching (NON-ZVS) operations of the asymmetrical voltage-cancellation control technique are identified. The effects of a distorted load current under a wide range of output powers are also analyzed for achieving a precise ZVS operating region. An experimental study is performed with a 1kW prototype. Simulation and experimental studies have confirmed the validity of the proposed method. An efficiency comparison between the variable frequency method and the conventional fixed-frequency method is provided.

Fuzzy Technique based Chopper Control for Slip Energy Recovery System with Twelve-Pulse Converter

  • Tunyasrirut, S.;Ngamwiwit, J.;Furuya, T.;Yamamoto, Y.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.509-514
    • /
    • 2004
  • This paper introduces the modified slip energy recovery system in order to improve its power factor and to reduce harmonics of line current waveforms. Twelve pulse line commutated converter with the chopper type IGBT is applied where the chopper is applied across the DC terminal and the chopped DC is fed to the converter operating as an inverter and then passed through the wye-wye and delta-wye transformer circuit. This scheme leads to be able to adjust the speed of the motor by the duty cycle of the chopper operating in PWM mode. The fuzzy logic controller is also introduced to the modified slip energy recovery system for keeping the motor speed to be constant when the load varies. The experimental results in testing the 0.22 kW wound rotor induction motor from no-load condition to rated condition show the effectiveness of the proposed control scheme.

  • PDF