• Title/Summary/Keyword: Load model

Search Result 7,676, Processing Time 0.04 seconds

Effects of Screw Configuration on Biomechanical Stability during Extra-articular Complex Fracture Fixation of the Distal Femur Treated with Locking Compression Plate (잠김 금속판(LCP-DF)을 이용한 대퇴골 원위부의 관절외 복합골절 치료시 나사못 배열에 따른 생체역학적 안정성 분석)

  • Kwon, Gyeong-Je;Jo, Myoung-Lae;Oh, Jong-Keon;Lee, Sung-Jae
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.3
    • /
    • pp.199-209
    • /
    • 2010
  • The locking compression plates-distal femur(LCP-DF) are being widely used for surgical management of the extra-articular complex fractures of the distal femur. They feature locking mechanism between the screws and the screw holes of the plate to provide stronger fixation force with less number of screws than conventional compression bone plate. However, their biomechanical efficacies are not fully understood, especially regarding the number of the screws inserted and their optimal configurations. In this study, we investigated effects of various screw configurations in the shaft and the condylar regions of the femur in relation to structural stability of LCP-DF system. For this purpose, a baseline 3-D finite element (FE) model of the femur was constructed from CT-scan images of a normal healthy male and was validated. The extra-articular complex fracture of the distal femur was made with a 4-cm defect. Surgical reduction with LCP-DF and bone screws were added laterally. To simulate various cases of post-op screw configurations, screws were inserted in the shaft (3~5 screws) and the condylar (4~6 screws) regions. Particular attention was paid at the shaft region where screws were inserted either in clustered or evenly-spaced fashion. Tied-contact conditions were assigned at the bone screws-plate whereas general contact condition was assumed at the interfaces between LCP-DF and bone screws. Axial compressive load of 1,610N(2.3 BW) was applied on the femoral head to reflect joint reaction force. An average of 5% increase in stiffness was found with increase in screw numbers (from 4 to 6) in the condylar region, as compared to negligible increase (less than 1%) at the shaft regardless of the number of screws inserted or its distribution, whether clustered or evenly-spaced. At the condylar region, screw insertion at the holes near the fracture interface and posterior locations contributed greater increase in stiffness (9~13%) than any other locations. Our results suggested that the screw insertion at the condylar region can be more effective than at the shaft during surgical treatment of fracture of the distal femur with LCP-DF. In addition, screw insertion at the holes close to the fracture interface should be accompanied to ensure better fracture healing.

Economic Evaluation Algorithm of Energy Storage System using the Secondary Battery (이차전지를 이용한 전기저장장치(BESS)의 경제성 평가 알고리즘)

  • Song, Seok-Hwan;Kim, Byung-Ki;Oh, Seung-Teak;Lee, Kye-Ho;Rho, Daeseok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.3813-3820
    • /
    • 2014
  • Recently, with the increase in electrical consumption and the unbalanced power demand and supply, the power reserve rate is becoming smaller and the reliability of the power supply is deteriorating. Under this circumstance, a Battery Energy Storage System (BESS) is considered to be an essential countermeasure for demand side management. On the other hand, an economic evaluation is a critical issue for the introduction of a power system because the cost of BESS is quite high. Therefore, this paper presents economic evaluation method for utility use by considering the best mix method and successive approximation method, and an economic evaluation method for customer use by considering the peak shaving function based on the real time price. From a case study on a model power system and educational customer, it was confirmed that the proposed method is a practical tool for the economic analysis of BESS.

A Biomechanical Analysis of Various Surgical Procedures for Osteonecrosis of the Femoral Head using a Finite Element Method (유한요소법을 이용한 대퇴 골두내 무혈성 괴사증의 다양한 수술적 기법에 대한 생체역학적 분석)

  • Kim, J.S.;Lee, S.J.;Shin, J.W.;Kim, Y.S.;Choi, J.B.;Kim, Y.S.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.05
    • /
    • pp.374-378
    • /
    • 1997
  • Operative procedures such as core drilling with and without fibular bone grafting have been recognized as the treatment methods for osteonecrosis of femoral head(ONFH) by delaying or preventing the collapse of the femoral head. In addition, core drilling with cementation using polymethylmethacrylate (PMMA) has been proposed recently as another surgical method. However, no definite treatment modality has been found yet while operative procedures remain controversial to many clinicians In this study, a finite element method(FEM) was employed to analyze and compare various surgical procedures of ONFH to provide a biomechanical insight. This study was based upon biomechanical findings which suggest stress concentration within the femoral head may facilitate the progression of the necrosis and eventual collapse. For this purpose, five anatomically relevant hip models were constructed in three dimensions : they were (1) intact(Type I), (2) necrotic(Type II), (3) core drilled only(Type III), (4) core drilled with fibular bone graft(Type IV), and (5) core drilled with cementation(Type V). Physiologically relevant loading were simulated. Resulting stresses were calculated. Our results showed that the volumetric percentage subjected to high stress in the necrotic cancellous region was greatest in the core drilled only model(Type III), followed by the necrotic(Type II), the bone graft (Type IV), and the cemented(Type V) models. Von Mises stresses at the tip of the graft(Type IV) was found to be twice more than those of cemented core(Type V) indicating the likelihood of the implant failure. In addition, stresses within the cemented core(Type V) were more evenly distributed and relatively lower than within the fibular bone graft(Type IV). In conclusion, our biomechanical analyses have demonstrated that the bone graft method(Type IV) and the cementation method(Type V) are both superior to the core decompression method(Type III) by reducing the high stress regions within the necrotic cancellous bone. Also it was found that the core region filled with PMMA(Type V) provides far smoother transfer of physiological load without causing the concentration of malignant stresses which may lead to the failure than with the fibular bone graft(Type IV). Therefore, considering the above results along with the degree of difficulties and risk of infection involved with preparation of the fibular bone graft, the cementation method appears to be a promising surgical treatment for the early stage of osteonecrosis of the femoral head.

  • PDF

Ergonomic Assessment for Manual Materials Handling of Livestock Feed by Elderly Farmers in Korea

  • Kim, Insoo;Lee, Kyung-Suk;Kim, Kyung-Ran;Chae, Hye-Seon;Kim, Sungwoo
    • Journal of the Ergonomics Society of Korea
    • /
    • v.34 no.3
    • /
    • pp.279-291
    • /
    • 2015
  • Objective: The purpose of the study is to evaluate appropriate weight for aged farmers in manually handling livestock feed in bags using ergonomic methods. Background: In the livestock industry in South Korea, despite the trend of aging of labor manpower, heavy items are still manually handled in many farms. In particular, among stockbreeding works, the handling of feed in bags weighing 25~30kg is reported as a cause of frequent injuries and musculoskeletal system diseases. However, studies on the standard for recommended weight allowed considering the physical characteristics of aged farmers older than 60 years with greatly decreased physical strength and muscle strength are insufficient. Method: To evaluate appropriate weight for handling of heavy livestock feed in bags, physical techniques for measuring recognized levels of physical work loads, the NLE (NIOSH lifting equation) a method that is an observation type technique, and an ergonomic modeling technique to predict compressive force imposed on L5/S1 were used. Subjects who participated in the experiment were organized into two groups of males/females with mean age exceeding 60 years, and lifting tasks were evaluated for nine weight levels. Results: Based on the results of psychophysical measurement, females showed a tendency of more drastic increases compared to males when weight was over 19kg. The results of estimation of regression models for the weight, 18.0 kg ($r^2=0.97$) and 15.3kg ($r^2=0.97$) were evaluated as stable load for males and females, respectively. In addition, both the observation type evaluation and ergonomic model evaluation showed stable loads in a range of 15~18kg. Conclusion: Given the results of the study, the weight of the feed in bags currently distributed to farms can become a cause of not only overexertion but also farm work related disasters such as musculoskeletal disorders and safety accidents. Providing livestock feed in bags weighing not more than 19kg for aged farmers is judged desirable, and managerial improvement for this matter is considered necessary. Application: The results of the present study can be utilized as useful data for institutional improvement of the weight of livestock feed in bags.

The Study of the Validity Test on the Self-monitoring Scale (자기 검색척도(Self-Monitoring Scale)의 타당성 검정에 관한 연구)

  • 이선아
    • Journal of Korean Academy of Nursing
    • /
    • v.28 no.3
    • /
    • pp.751-759
    • /
    • 1998
  • The study of the validity test on the self-monitoring scale for nurses In this study, both the literary survey as well as empirical research has been executed to test the validity of the scales that measure the construct of the self-monitoring scale. The self-monitoring scale could not be classified into five factors as Snyder suggested. Many other scholars (Briggs, Cheek and Buss, 1980) suggested 3 different classifications which was accepted by Snyder and Gangestad (1986). John, Cheek and Klohnen(1996) claimed a two-factor classification. As has been discussed, factor analysis is used to prove convergent validity within the factor and discriminant validity between the factors. However, depending on the researchers, many variations in classification of the factors were found and a lack of content and discriminant validity were found in the previous research findings. It is also important to note that Snyder's self-monitoring scale did not factor-load at over. 30 for all 25 items, regardless of how many factors could be classified. According to findings of this study, the self-monitoring scale neither classified as five, three or two factors nor factor loaded as hypothesized. It is also clear that Snyder's self-monitoring scale lacks convergent validity as the sub-factors of the scale failed to prove its uni-dimensionality. The A self-monit oring scale not only fail to overcome the problems of Snyder's self-monitori ng scale but even lost the attractiveness of the self-monitoring scale. In this study it was also found that the A self-monitoring scale was not classified in either in a two or three-factor classification as hypothesized. It is, of course, not desirable to use any scale that lacks convergent and discriminant validity even though it has been widely used and has held a great deal of influence on the field of social psychology. To overcome the shortcomings of Snyder's self-monitoring scale, Lennox and Wolfe(1984) suggested 13 items. This study was dedicated to test the validity and reliability of the scale, in which we found that the data presented in validity as the two factors were class ified and loaded as expected. Reliability was also proven by checking Cronbach's α for each factor and for the total items. In addition, a confirmatory factor analysis was executed for the 13 items using LISREL 8.12 program to confirm convergent validity in a two-factor classification. The model was fitting and sound : however, the self-monitoring scale was unfitted and not validated. Thus, it is recommended to use not the original nor the abbreviated self-monitoring scale but the 13 items in future studies. It should also be noted that items 7 and 13 should be removed to obtain better uni-dimensionality for the 13 items. These items loaded at over. 30, too high for the two factors in the test results of Factor analysis. In addition, it is necessary to double-check the cause of two-hold loading at over .30 for the two factors. It could be a problem caused by data or by the scale itself. Therefore, additional studies should follow to better clarify this matter.

  • PDF

ICT inspection System for Flexible PCB using Pin-driver and Ground Guarding Method (핀 드라이버와 접지가딩 기법을 적용한 모바일 디스플레이용 연성회로기판의 ICT검사 시스템)

  • Han, Joo-Dong;Choi, Kyung-Jin;Lee, Young-Hyun;Kim, Dong-Han
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.6
    • /
    • pp.97-104
    • /
    • 2010
  • In this paper, ICT (in circuit tester) inspection system and inspection algorithm is proposed and detects whether inferiority exists or not in the mounted device on the flexible PCB in cell phones or mobile display devices. The system is composed of PD (pin-driver) and GGM (ground guarding method). The structural characteristics of these flexible PCB are analyzed, which is needed to input or output the test signal. Test signal to investigate the characteristics of passive components is generated using modified circuit diagram and proposed inspection algorithm. PM (pin-map) is decided on the basis of circuit diagram and has the information about the kind of test signal to be applied and the pad number for the test signal to be connected. PD is designed to load a proper test signal for a specific pad and is adjusted according to PM so that the reconstructed circuit has minimum node and mash. The proposed ICT inspection system is realized using PD and GGM. Using the system, an experiment for each passive component is done to investigate the measurement accuracy of the developed system and an experiment for real flexible PCB model is done to verity the effectiveness of the system.

FEM-based Seismic Reliability Analysis of Real Structural Systems (실제 구조계의 유한요소법에 기초한 지진 신뢰성해석)

  • Huh Jung-Won;Haldar Achintya
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.2 s.72
    • /
    • pp.171-185
    • /
    • 2006
  • A sophisticated reliability analysis method is proposed to evaluate the reliability of real nonlinear complicated dynamic structural systems excited by short duration dynamic loadings like earthquake motions by intelligently integrating the response surface method, the finite element method, the first-order reliability method, and the iterative linear interpolation scheme. The method explicitly considers all major sources of nonlinearity and uncertainty in the load and resistance-related random variables. The unique feature of the technique is that the seismic loading is applied in the time domain, providing an alternative to the classical random vibration approach. The four-parameter Richard model is used to represent the flexibility of connections of real steel frames. Uncertainties in the Richard parameters are also incorporated in the algorithm. The laterally flexible steel frame is then reinforced with reinforced concrete shear walls. The stiffness degradation of shear walls after cracking is also considered. The applicability of the method to estimate the reliability of real structures is demonstrated by considering three examples; a laterally flexible steel frame with fully restrained connections, the same steel frame with partially restrained connections with different rigidities, and a steel frame reinforced with concrete shear walls.

Validating the Structural Behavior and Response of Burj Khalifa: Synopsis of the Full Scale Structural Health Monitoring Programs

  • Abdelrazaq, Ahmad
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.1
    • /
    • pp.37-51
    • /
    • 2012
  • New generation of tall and complex buildings systems are now introduced that are reflective of the latest development in materials, design, sustainability, construction, and IT technologies. While the complexity in design is being overcome by the availability and advances in structural analysis tools and readily advanced software, the design of these buildings are still reliant on minimum code requirements that yet to be validated in full scale. The involvement of the author in the design and construction planning of Burj Khalifa since its inception until its completion prompted the author to conceptually develop an extensive survey and real-time structural health monitoring program to validate all the fundamental assumptions mad for the design and construction planning of the tower. The Burj Khalifa Project is the tallest structure ever built by man; the tower is 828 meters tall and comprises of 162 floors above grade and 3 basement levels. Early integration of aerodynamic shaping and wind engineering played a major role in the architectural massing and design of this multi-use tower, where mitigating and taming the dynamic wind effects was one of the most important design criteria established at the onset of the project design. Understanding the structural and foundation system behaviors of the tower are the key fundamental drivers for the development and execution of a state-of-the-art survey and structural health monitoring (SHM) programs. Therefore, the focus of this paper is to discuss the execution of the survey and real-time structural health monitoring programs to confirm the structural behavioral response of the tower during construction stage and during its service life; the monitoring programs included 1) monitoring the tower's foundation system, 2) monitoring the foundation settlement, 3) measuring the strains of the tower vertical elements, 4) measuring the wall and column vertical shortening due to elastic, shrinkage and creep effects, 5) measuring the lateral displacement of the tower under its own gravity loads (including asymmetrical effects) resulting from immediate elastic and long term creep effects, 6) measuring the building lateral movements and dynamic characteristic in real time during construction, 7) measuring the building displacements, accelerations, dynamic characteristics, and structural behavior in real time under building permanent conditions, 8) and monitoring the Pinnacle dynamic behavior and fatigue characteristics. This extensive SHM program has resulted in extensive insight into the structural response of the tower, allowed control the construction process, allowed for the evaluation of the structural response in effective and immediate manner and it allowed for immediate correlation between the measured and the predicted behavior. The survey and SHM programs developed for Burj Khalifa will with no doubt pioneer the use of new survey techniques and the execution of new SHM program concepts as part of the fundamental design of building structures. Moreover, this survey and SHM programs will be benchmarked as a model for the development of future generation of SHM programs for all critical and essential facilities, however, but with much improved devices and technologies, which are now being considered by the author for another tall and complex building development, that is presently under construction.

An Experimental Study on Flexural Behavior of Steel Fiber Reinforced Ultra High Performance Concrete Prestressed Girders (강섬유 보강 초고성능 콘크리트 프리스트레스트 거더의 휨거동 실험 연구)

  • Yang, In-Hwan;Joh, Chang-Bin;Kim, Byung-Suk
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.6
    • /
    • pp.777-786
    • /
    • 2010
  • This paper examines the flexural behavior of full-scale prestressed concrete girders that were constructed of steel fiber reinforced ultra high performance concrete (UHPC). This study is designed to provide more information about the bending characteristics of UHPC girders in order to establish a reasonable prediction model for flexural resistance and deflection for future structural design codes. Short steel fibers have been introduced into prestressed concrete T-girders in order to study their effects under flexural loads. Round straight high strength steel fibers were used at volume fraction of 2%. The girders were cast using 150~190 MPa steel fiber reinforced UHPC and were designed to assess the ability of steel fiber reinforced UHPC to carry flexural loads in prestressed girders. The experimental results show that steel fiber reinforced UHPC enhances the cracking behavior and ductility of beams. Moreover, when ultimate failure did occur, the failure of girders composed of steel fiber reinforced UHPC was observed to be precipitated by the pullout of steel fibers that were bridging tension cracks in the concrete. Flexural failure of girders occurred when the UHPC at a particular cross section began to lose tensile capacity due to steel fiber pullout. In addition, it was determined that the level of prestressing force influenced the ultimate load capacity.

High-Frequency Parameter Extraction of Insulating Transformer Using S-Parameter Measurement (S-파라메타를 이용한 절연 변압기의 고주파 파라메타 추출)

  • Kim, Sung-Jun;Ryu, Soo-Jung;Kim, Tae-Ho;Kim, Jong-Hyeon;Nah, Wan-Soo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.3
    • /
    • pp.259-268
    • /
    • 2014
  • In this paper, we suggest a method of extracting circuit parameters of the insulating transformer using S-parameter measurement, especially in high frequency range. At 60 Hz, conventionally, no load test and short circuit test are used to extract the circuit parameters. In this paper S-parameters measured from VNA(Vector Network Analyzer) were used to extract the transformer parameters using data fitting method (optimization). The S-parameters from the equivalent circuit using the extracted parameters showed good agreement with those from measurement. Furthermore, the transformer secondary voltages from the equivalent circuit model also coincide quite exactly to the measured secondary voltages in sinusoidal forms. Finally we assert that the proposed method to extract the parameters for the insulating transformer using S-parameter is valid especially in high frequency.