DOI QR코드

DOI QR Code

The effect of implant system with reverse beveled platform design on marginal bone stress distribution

임플란트 경부의 역사면 디자인이 변연골 응력분포에 미치는 영향

  • Cha, Ji-Young (Department of Prosthodontics, School of Dentistry, Kyungpook National University) ;
  • Cho, Jin-Hyun (Department of Prosthodontics, School of Dentistry, Kyungpook National University) ;
  • Jo, Kwang-Hun (Department of Prosthodontics, School of Dentistry, Kyungpook National University)
  • 차지영 (경북대학교 치의학전문대학원 치과보철학교실) ;
  • 조진현 (경북대학교 치의학전문대학원 치과보철학교실) ;
  • 조광헌 (경북대학교 치의학전문대학원 치과보철학교실)
  • Received : 2010.09.09
  • Accepted : 2010.09.29
  • Published : 2010.10.29

Abstract

Purpose: The purpose of this study was to investigate the effects of the surface morphology of the implant neck on marginal bone stress measured by using finite element analysis in six implant models. Materials and methods: The submerged type rescue implant system (Dentis co., Daegu, Korea) was selected as an experimental model. The implants were divided into six groups whose implant necks were differently designed in terms of height (h, 0.4 and 1.0 mm) and width (platform width, w = 3.34 + 2b [b, 0.2, 0.3 and 0.4 mm]). Finite element models of implant/bone complex were created using an axisymmetric scheme. A load of 100 N was applied to the central node on the top of crown in parallel with the implant axis. The maximum compression stress was calculated and compared. Results: Stress concentration commonly observed around dental implants did not occur in the marginal bone around all six test implant models. Marginal bone stress varied according to the implant neck bevel which had different width and height. The stress was affected more markedly by the difference in height than in width. Conclusion: This result indicates that the implant neck bevel may play an important role in improving stress distribution in the marginal bone area.

연구 목적: 임플란트 경부 역사면의 디자인이 변연골 응력분포에 미치는 영향을 알아보기 위해 유한요소법을 사용하여 비교분석하였다. 연구 재료 및 방법:경부 직경 5.5 mm, 길이 8 mm의 매립형 (submerged type) 고정체 (Dentis Co., Daegu, Korea)를 연구모델로 선정하였다. 임플란트 경부 역사면의 디자인을 높이 (h, 0.4 mm, 1.0 mm)와폭경({5.5 - (3.34 + 2b)} / 2, [b, 0.2 mm, 0.3 mm, 0.4 mm])을 다르게 하여 총 여섯 가지의 실험 임플란트 조합으로 구분하였다. 축대칭 유한요소모델링을 이용하여 임플란트/악골 복합체에 대해 임플란트 장축에 평행한 방향으로 치관 교합면의 중심부에 수직 하중 100 N이 작용할 때 변연골의 최대압축응력을 산출하여 비교 하였다. 결과: 여섯 개의 모든 실험 임플란트 모델에서 변연골의 응력집중이 관찰되지 않았다. 변연골 응력은 임플란트 경부 역사면의 폭과 높이의 차이에 따라 달라지는 것이 관찰되었으며 사면각이 클수록 응력 집중이 증가하는 경향을 보였다. 결론: 임플란트 경부 역사면 디자인의 부여는 변연골 응력 분포 개선에 중요한 역할을 할 수 있을 것으로 여겨진다.

Keywords

References

  1. Hansson S. The implant neck: smooth or provided with retention elements. A biomechanical approach. Clin Oral Implants Res 1999;10:394-405. https://doi.org/10.1034/j.1600-0501.1999.100506.x
  2. Tada S, Stegaroiu R, Kitamura E, Miyakawa O, Kusakari H. Influence of implant design and bone quality on stress/strain distribution in bone around implants: a 3-dimensional finite element analysis. Int J Oral Maxillofac Implants 2003;18:357-68.
  3. Petrie CS, Williams JL. Comparative evaluation of implant designs: influence of diameter, length, and taper on strains in the alveolar crest. A three-dimensional finite-element analysis. Clin Oral Implants Res 2005;16:486-94. https://doi.org/10.1111/j.1600-0501.2005.01132.x
  4. Holmes DC, Loftus JT. Influence of bone quality on stress distribution for endosseous implants. J Oral Implantol 1997;23:104-11.
  5. Kitagawa T, Tanimoto Y, Nemoto K, Aida M. Influence of cortical bone quality on stress distribution in bone around dental implant. Dent Mater J 2005;24:219-24. https://doi.org/10.4012/dmj.24.219
  6. Sevimay M, Turhan F, Kil¸icarslan MA, Eskitascioglu G. Threedimensional finite element analysis of the effect of different bone quality on stress distribution in an implant-supported crown. J Prosthet Dent 2005;93:227-34. https://doi.org/10.1016/j.prosdent.2004.12.019
  7. Barbier L, Vander Sloten J, Krzesinski G, Schepers E, Van der Perre G. Finite element analysis of non-axial versus axial loading of oral implants in the mandible of the dog. J Oral Rehabil 1998;25:847-58. https://doi.org/10.1046/j.1365-2842.1998.00318.x
  8. Kitamura E, Stegaroiu R, Nomura S, Miyakawa O. Biomechanical aspects of marginal bone resorption around osseointegrated implants: considerations based on a three-dimensional finite element analysis. Clin Oral Implants Res 2004;15:401-12. https://doi.org/10.1111/j.1600-0501.2004.01022.x
  9. Kitamura E, Stegaroiu R, Nomura S, Miyakawa O. Influence of marginal bone resorption on stress around an implant-a three-dimensional finite element analysis. J Oral Rehabil 2005;32:279-86. https://doi.org/10.1111/j.1365-2842.2004.01413.x
  10. Natali AN, Pavan PG, Ruggero AL. Analysis of bone-implant interaction phenomena by using a numerical approach. Clin Oral Implants Res 2006;17:67-74. https://doi.org/10.1111/j.1600-0501.2005.01162.x
  11. Chang M, Wennstro¨m JL, Odman P, Andersson B. Implant supported single-tooth replacements compared to contralateral natural teeth. Crown and soft tissue dimensions. Clin Oral Implants Res 1999;10:185-94. https://doi.org/10.1034/j.1600-0501.1999.100301.x
  12. Albrektsson T, Zarb G, Worthington P, Eriksson AR. The long-term efficacy of currently used dental implants: a review and proposed criteria of success. Int J Oral Maxillofac Implants 1986;1:11-25.
  13. Frost HM. Wolff's Law and bone's structural adaptations to mechanical usage: an overview for clinicians. Angle Orthod 1994;64: 175-88.
  14. Rubin CT, Lanyon LE. Regulation of bone mass by mechanical strain magnitude. Calcif Tissue Int 1985;37:411-7. https://doi.org/10.1007/BF02553711
  15. Duyck J, R􀝚nold HJ, Van Oosterwyck H, Naert I, Vander Sloten J, Ellingsen JE. The influence of static and dynamic loading on marginal bone reactions around osseointegrated implants: an animal experimental study. Clin Oral Implants Res 2001;12:207-18. https://doi.org/10.1034/j.1600-0501.2001.012003207.x
  16. Schrotenboer J, Tsao YP, Kinariwala V, Wang HL. Effect of microthreads and platform switching on crestal bone stress levels: a finite element analysis. J Periodontol 2008;79:2166-72. https://doi.org/10.1902/jop.2008.080178
  17. Lee DW, Choi YS, Park KH, Kim CS, Moon IS. Effect of microthread on the maintenance of marginal bone level: a 3-year prospective study. Clin Oral Implants Res 2007;18:465-70. https://doi.org/10.1111/j.1600-0501.2007.01302.x
  18. Chung JM, Jo KH, Lee CH, Yu WJ, Lee KB. Finite element analysis of peri-implant bone stress influenced by cervical module configuration of endosseous implant. J Korean Acad Prosthodont 2009;47:394-405. https://doi.org/10.4047/jkap.2009.47.4.394
  19. Li YF. Comparative and analysis study of peri-implant bone stress around Rescue implant and standard implant using finite element method. Masters thesis, Department of Dentistry, Graduate School, Kyungpook National University, Daegu, Korea, 2009.
  20. NISA II/DISPLAY III User's Manuel, Engineering Mechanics Research Corporation (EMRC), 1998.
  21. Langer B, Langer L, Herrmann I, Jorneus L. The wide fixture: a solution for special bone situations and a rescue for the compromised implant. Part 1. Int J Oral Maxillofac Implants 1993;8:400-8.
  22. Covani U, Bortolaia C, Barone A, Sbordone L. Bucco-lingual crestal bone changes after immediate and delayed implant placement. J Periodontol 2004;75:1605-12. https://doi.org/10.1902/jop.2004.75.12.1605
  23. Broggini N, McManus LM, Hermann JS, Medina RU, Oates TW, Schenk RK, Buser D, Mellonig JT, Cochran DL. Persistent acute inflammation at the implant-abutment interface. J Dent Res 2003;82:232-7. https://doi.org/10.1177/154405910308200316
  24. Hermann JS, Buser D, Schenk RK, Cochran DL. Crestal bone changes around titanium implants. A histometric evaluation of unloaded non-submerged and submerged implants in the canine mandible. J Periodontol 2000;71:1412-24. https://doi.org/10.1902/jop.2000.71.9.1412
  25. Piattelli A, Vrespa G, Petrone G, Iezzi G, Annibali S, Scarano A. Role of the microgap between implant and abutment: a retrospective histologic evaluation in monkeys. J Periodontol 2003;74:346-52. https://doi.org/10.1902/jop.2003.74.3.346
  26. Tarnow DP, Cho SC, Wallace SS. The effect of inter-implant distance on the height of inter-implant bone crest. J Periodontol 2000;71:546-9. https://doi.org/10.1902/jop.2000.71.4.546
  27. Hartman GA, Cochran DL. Initial implant position determines the magnitude of crestal bone remodeling. J Periodontol 2004;75:572-7. https://doi.org/10.1902/jop.2004.75.4.572
  28. Sanavi F, Weisgold AS, Rose LF. Biologic width and its relation to periodontal biotypes. J Esthet Dent 1998;10:157-63. https://doi.org/10.1111/j.1708-8240.1998.tb00351.x
  29. Oh TJ, Yoon J, Misch CE, Wang HL. The causes of early implant bone loss: myth or science? J Periodontol 2002;73:322-33. https://doi.org/10.1902/jop.2002.73.3.322
  30. Misch CE. Contemporary Implant Dentistry. St. Louis: Mosby; 2008, p. 545.