• Title/Summary/Keyword: Load density

검색결과 1,071건 처리시간 0.03초

Stacked Single Crystal Silicon TFT Cell의 적용에 의한 SRAM 셀의 전기적인 특성에 관한 연구 (Electrical Characteristics of SRAM Cell with Stacked Single Crystal Silicon TFT Cell)

  • 강이구;김진호;유장우;김창훈;성만영
    • 한국전기전자재료학회논문지
    • /
    • 제19권4호
    • /
    • pp.314-321
    • /
    • 2006
  • There have been great demands for higher density SRAM in all area of SRAM applications, such as mobile, network, cache, and embedded applications. Therefore, aggressive shrinkage of 6 T Full CMOS SRAM had been continued as the technology advances. However, conventional 6 T Full CMOS SRAM has a basic limitation in the cell size because it needs 6 transistors on a silicon substrate compared to 1 transistor in a DRAM cell. The typical cell area of 6 T Full CMOS SRAM is $70{\sim}90\;F^2$, which is too large compared to $8{\sim}9\;F^2$ of DRAM cell. With 80 nm design rule using 193 nm ArF lithography, the maximum density is 72 Mbits at the most. Therefore, pseudo SRAM or 1 T SRAM, whose memory cell is the same as DRAM cell, is being adopted for the solution of the high density SRAM applications more than 64 M bits. However, the refresh time limits not only the maximum operation temperature but also nearly all critical electrical characteristics of the products such as stand_by current and random access time. In order to overcome both the size penalty of the conventional 6 T Full CMOS SRAM cell and the poor characteristics of the TFT load cell, we have developed S3 cell. The Load pMOS and the Pass nMOS on ILD have nearly single crystal silicon channel according to the TEM and electron diffraction pattern analysis. In this study, we present $S^3$ SRAM cell technology with 100 nm design rule in further detail, including the process integration and the basic characteristics of stacked single crystal silicon TFT.

장기 반복하중을 받는 모래지반의 축방향 누적소성변형률 평가 (Evaluation of Accumulated Axial Plastic Strain of Sands under Long-term Cyclic Loading)

  • 서민창;이시훈;김성렬
    • 한국해양공학회지
    • /
    • 제28권2호
    • /
    • pp.133-139
    • /
    • 2014
  • Offshore wind turbines have been constructed extensively throughout the world. These turbines are subjected to approximately $10^8$ horizontal load cycles produced from wind, waves, and current during their lifetimes. Therefore, the accumulated displacement of the foundation under horizontal cyclic loading has significant effects on the foundation design of a wind turbine. Akili(2006) and Achmus et al.(2009) performed cyclic triaxial tests on dry sands and proposed an empirical model for predicting the accumulated plastic strain of sands under long-term cyclic loading. In this study, cyclic triaxial tests were performed to analyze the cyclic loading behaviors of dry sands. A total of 27 test cases were performed by varying three parameters: the relative density of the sands, cyclic load level, and confining stress. The test results showed that the accumulated plastic strain increased with an increase in the cyclic load level and a decrease in the relative density of the sand. The confining stress had less effect on the plastic strain. In addition, the plastic strain at the 1st loading cycle was about 57% of the accumulated strain at 1,000 cycles. Finally, the input parameters of the empirical models of Akili(2006) and Achmus et al.(2009) were evaluated by using the relative density of the sand and the cyclic load level.

대용량 리튬 이온 배터리용 Active 방전시험기의 개발 (Development of active discharge tester for high capacity lithium-ion battery)

  • 박준형;가니 도가라 유나나;박찬원
    • 산업기술연구
    • /
    • 제40권1호
    • /
    • pp.13-18
    • /
    • 2020
  • Lithium-ion batteries have a small volume, light weight and high energy density, maximizing the utilization of mobile devices. It is widely used for various purposes such as electric bicycles and scooters (e-Mobility), mass energy storage (ESS), and electric and hybrid vehicles. To date, lithium-ion batteries have grown to focus on increasing energy density and reducing production costs in line with the required capacity. However, the research and development level of lithium-ion batteries seems to have reached the limit in terms of energy density. In addition, the charging time is an important factor for using lithium-ion batteries. Therefore, it was urgent to develop a high-speed charger to shorten the charging time. In this thesis, a discharger was fabricated to evaluate the capacity and characteristics of Li-ion battery pack which can be used for e-mobility. To achieve this, a smart discharger is designed with a combination of active load, current sensor, and temperature sensor. To carry out this thesis, an active load switching using sensor control circuit, signal processing circuit, and FET was designed and manufactured as hardware with the characteristics of active discharger. And as software for controlling the hardware of the active discharger, a Raspberry Pi control device and a touch screen program were designed. The developed discharger is designed to change the 600W capacity battery in the form of active load.

A parametric study of settlement and load transfer mechanism of piled raft due to adjacent excavation using 3D finite element analysis

  • Karira, Hemu;Kumar, Aneel;Hussain Ali, Tauha;Mangnejo, Dildar Ali;Mangi, Naeem
    • Geomechanics and Engineering
    • /
    • 제30권2호
    • /
    • pp.169-185
    • /
    • 2022
  • The urbanization and increasing rate of population demands effective means of transportation system (basement and tunnels) as well as high-rise building (resting on piled foundation) for accommodation. Therefore, it unavoidable to construct basements (i.e., excavation) nearby piled foundation. Since the basement excavation inevitably induces soil movement and stress changes in the ground, it may cause differential settlements to nearby piled raft foundation. To understand settlement and load transfer mechanism in the piled raft due to excavation-induced stress release, numerical parametric studies are carried out in this study. The effects of excavation depths (i.e., formation level) relative to piled raft were investigated by simulating the excavation near the pile shaft (i.e., He/Lp=0.67), next to (He/Lp=1.00) and below the pile toe (He/Lp=1.33). In addition, effects of sand density and raft fixity condition were investigated. The computed results have revealed that the induced settlement, tilting, pile lateral movement and load transfer mechanism in the piled raft depends upon the embedded depth of the diaphragm wall. Additional settlement of the piled raft due to excavation can be account for apparent loss of load carrying capacity of the piled raft (ALPC). The highest apparent loss of piled raft capacity ALPC (on the account of induced piled raft settlement) of 50% was calculated in in case of He/Lp = 1.33. Furthermore, the induced settlement decreased with increasing the relative density from 30% to 90%. On the contrary, the tilting of the raft increases in denser ground. The larger bending moment and lateral force was induced at the piled heads in fixed and pinned raft condition.

클러스터링 기법을 이용한 수용가별 전력 데이터 패턴 분석 (Customer Load Pattern Analysis using Clustering Techniques)

  • 유승형;김홍석;오도은;노재구
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제2권1호
    • /
    • pp.61-69
    • /
    • 2016
  • Understanding load patterns and customer classification is a basic step in analyzing the behavior of electricity consumers. To achieve that, there have been many researches about clustering customers' daily load data. Nowadays, the deployment of advanced metering infrastructure (AMI) and big-data technologies make it easier to study customers' load data. In this paper, we study load clustering from the view point of yearly and daily load pattern. We compare four clustering methods; K-means clustering, hierarchical clustering (average & Ward's method) and DBSCAN (Density-Based Spatial Clustering of Applications with Noise). We also discuss the relationship between clustering results and Korean Standard Industrial Classification that is one of possible labels for customers' load data. We find that hierarchical clustering with Ward's method is suitable for clustering load data and KSIC can be well characterized by daily load pattern, but not quite well by yearly load pattern.

수박 밀도의 간편 계측시스템 개발 (Development of Simple Density Measurement System for Watermelons)

  • 최규홍;이강진;최동수;김기영;손재룡
    • Journal of Biosystems Engineering
    • /
    • 제29권2호
    • /
    • pp.167-174
    • /
    • 2004
  • Density is a physical property which contains information relating to the internal quality of fruits and vegetables, and can be used as an index for nondestructive quality evaluation. Density sorting has been employed by farmers for some agricultural products since ancient times. In this study, an automatic density measuring system based on the platform scale or water displacement method was developed for density sorting of watermelon. It consisted of water tan, load cell, net tray, electric motor, limit switch, control system and its program. The resolution of density was 0.001 g/㎤. In order to calibrate and evaluate the accuracy, the density was measured using a balloon kept in cold water. It showed 1.002 g/㎤ which almost correspond to real density of water. Test results with 6 watermelons and 3 replications showed that the standard deviations of the dens were 0.001∼0.004 g/㎤. The relationship between density and internal quality of watermelon was investigated using the system. The densities of hollow watermelons were less than 0.950 g/㎤, it was apparent that the density of the watermelon was related to the degree of hollowness. But the soluble solid contents and internal defects could not be estimated from the density.

Walking load model for single footfall trace in three dimensions based on gait experiment

  • Peng, Yixin;Chen, Jun;Ding, Guo
    • Structural Engineering and Mechanics
    • /
    • 제54권5호
    • /
    • pp.937-953
    • /
    • 2015
  • This paper investigates the load model for single footfall trace of human walking. A large amount of single person walking load tests were conducted using the three-dimensional gait analysis system. Based on the experimental data, Fourier series functions were adopted to model single footfall trace in three directions, i.e. along walking direction, direction perpendicular to the walking path and vertical direction. Function parameters such as trace duration time, number of Fourier series orders, dynamic load factors (DLFs) and phase angles were determined from the experimental records. Stochastic models were then suggested by treating walking rates, duration time and DLFs as independent random variables, whose probability density functions were obtained from experimental data. Simulation procedures using the stochastic models are presented with examples. The simulated single footfall traces are similar to the experimental records.

폐색정도를 고려한 개단말뚝의 지지력 산정 (Estimation of Bearing Capacity for Open-Ended Pile Considering Soil Plugging)

  • 백규호
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.397-404
    • /
    • 2002
  • The bearing capacity of open-ended piles is affected by the degree of soil plugging, which is quantified by the IFR. There is not at present a design criterion for open-ended piles that explicitly considers the effect of IFR on pile load capacity In order to investigate this effect, model pile load tests using a calibration chamber were conducted on instrumented open-ended piles. The results of these tests show that the IFR increases with increasing relative density and increasing horizontal stress of soils. The unit base and shaft resistances decrease with increasing IFR. Based on the results of the model pile tests, new empirical relations for base load capacity and shaft load capacity of open-ended piles are proposed. In order to check the accuracy of predictions made with the proposed equations, the equations were applied to the full-scale pile load test preformed in this study, Based on the comparisons with the pile load test results, the proposed equations appear to produce satisfactory predictions.

  • PDF

데이터센터 냉방 시스템의 MLC(Mechanical Load Component) 관련 설계인자 도출 (Cooling System Design Factors related to Mechanical Load Component (MLC) in Data Center)

  • 김지혜
    • 한국건축친환경설비학회 논문집
    • /
    • 제12권6호
    • /
    • pp.606-617
    • /
    • 2018
  • Increased density of racks has resulted in increased use of data center cooling energy and the needs for energy efficient cooling systems has increased. In response to these needs, ASHRAE presented a performance indicator, which is Mechanical Load Component (MLC), for the purpose of evaluating systems at the design stage. However, the MLC metrics presented in the current standard can only be determined for system compliance and compared alternative systems with the system configuration completed. Therefore, there are limitations to considering MLC from the early stages of design. In this study, to extend the scope of application of MLC in the design phase, the design factors of the main equipment comprising the cooling system are classified by the MLC load component and interrelations between design factors were identified.