• Title/Summary/Keyword: Load combination

Search Result 702, Processing Time 0.029 seconds

ENGINE CONTROL USING COMBUSTION MODEL

  • Ohyama, Y.
    • International Journal of Automotive Technology
    • /
    • v.2 no.2
    • /
    • pp.53-62
    • /
    • 2001
  • The combination of physical models of an advanced engine control system was proposed to obtain sophisticated combustion control in ultra-lean combustion, including homogeneous compression-ignition and activated radical combustion with a light load and in stoichiometric mixture combustion with a full load. Physical models of intake, combustion and engine thermodynamics were incorporated, in which the effects of residual gas from prior cycles on intake air mass and combustion were taken into consideration. The combined control of compression ignition at a light load and sparit ignition at full load for a high compession ratio engine was investigated using simulations. The control strategies of the variable valve timing and the intake pressure were clarified to keep auto-ignition at a light load and prevent knock at a full load.

  • PDF

Genetic association of polymorphisms in porcine RGS16 with porcine circovirus viral load in naturally infected Yorkshire pigs

  • Lee, Seung-Hoon;Lim, Kyu-Sang;Hong, Ki-Chang;Kim, Jun-Mo
    • Journal of Animal Science and Technology
    • /
    • v.63 no.6
    • /
    • pp.1223-1231
    • /
    • 2021
  • Regulator of G protein signaling 16 (RGS16) is known to be associated with porcine circovirus type 2 (PCV2). PCV2 associated disease (PCVAD) is a serious problem in the swine industry. The representative symptoms of PCVAD are high viral titer proliferation and decreased average daily gain. In this study, we identified single nucleotide polymorphisms (SNPs) in the RGS16 region, including the upstream region. Of the 22 identified SNPs, rs332913874, rs326071195, and rs318298586 were genotyped in 142 Yorkshire pigs. These SNPs were significantly associated with the PCV2 viral load. Moreover, the haplotype combination was also related to the PCV2 viral load. The haplotype and diplotype analysis also had a significant difference with the PCV2 viral load. Taken together, our results suggest that RGS16 SNPs considerably affect the PCV2 viral load.

Effect of soil-structure interaction on the reliability of hyperbolic cooling towers

  • Liao, Wen;Lu, Wenda;Liu, Renhuai
    • Structural Engineering and Mechanics
    • /
    • v.7 no.2
    • /
    • pp.217-224
    • /
    • 1999
  • A semi-stochastic process model of reliability was established for hyperbolic cooling towers subjected to combined loadings of wind force, self-weight, temperature loading. Effect of the soil-structure interaction on reliability was evaluated. By involving the gust factor, an equivalent static scheme was employed to convert the dynamic model to static model. The TR combination rule was used to consider relations between load responses. An analysis example was made on the 90M cooling tower of Maoming, Guangdong of China. Numerical results show that the design not including interaction turns to be conservative.

Finite Element Analysis on the Small Scale Yielding of a Crack Tip in Plane Stress (平面應力狀態 에서 균열先端 의 小規模降伏 에 관한 有限要素解析)

  • 임장근;맹주성;김병용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.7 no.3
    • /
    • pp.270-277
    • /
    • 1983
  • Plastic plane stress solutions are given for a center cracked strip, characterized by the Ramberg-Osgood plastic index, under bi-axial tension. Using a power law hardening stress-strain relation, an incremental plasticity finite element formulation is developed, and simple formulation is given for computing J-integral with nodal displacements. The near tip angular distribution of von Mises effective stress doesn't differ significantly in magnitude according to the change of loading stress and bi-axial load combination factor. But, for smaller plastic index, the location of its maximum value moves vertically at a head of crack. J-integral value, in the plastic zone near crack tip, decreases with load combination factor for large and small plastic index.

A Study on the Resetting of Incremental Heat Rate Curve of Combined Cycle Unit by Combination (복합발전기 조합별 증분비 곡선 재설정에 관한 연구)

  • Hong, Sang-Beom;Choi, Jun-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.1
    • /
    • pp.8-12
    • /
    • 2019
  • Combined Cycle Unit(CC) generates the primary power from the Gas Turbine(GT) and supplies the remaining heat of the GT to the Steam Turbine(ST) to generate the secondary power from the ST. It plays a major role in terms of energy efficiency and Load Frequency Control(LFC). Incremental Heat Rate(IHR) curves of economic dispatch(ED) of CC is applied differently by GT/ST combination. But It is practically difficult because of performance test by all combinations. This paper suggests a reasonable method for estimating IHR curves for partial combinations(1:1~(N-1):1) using IHR curves when operating with GT alone(1:0) and with all(N:1) combinations of CC.

A Study on Secondary Lining Design of Tunnels Using Ground-Lining Interaction Model (지반-라이닝 상호작용 모델을 이용한 터널 2차라이닝 설계에 관한 연구)

  • Chang, Seok-Bue;Huh, Do-Hak;Moon, Hyun-Koo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.4
    • /
    • pp.365-375
    • /
    • 2006
  • The structural analysis for the secondary lining of tunnels is generally performed by a frame analysis model. This model requires a ground loosening load estimated by some empirical methods, but the load is likely to be subjective and too large. The ground load acting on the secondary lining is due to the loss of the supporting function of the first support members such as shotcrete and rockbolts. Therefore, the equilibrium condition of the ground and the first support members should be considered to estimate the ground load acting on the secondary lining. Ground-lining interaction model, shortly GLI model, is developed on the basis of the concept that the secondary lining supports the ground deformation triggered by the loss of the support capacity of the first support members. Accordingly, the GLI model can take into account the ground load reflecting effectively not only the complex ground conditions but the installed conditions of the first support members. The load acting on the secondary lining besides the ground load includes the groundwater pressure and earthquake load. For the structural reinforcement of the secondary lining based on the ultimate strength design method, the factored load and various load combination should be considered. Since the GLI model has difficulty in dealing with the factored load, introduced in this study is the superposition principle in which the section moment and force of the secondary lining estimated for individual loads are multiplied by the load factors. Finally, the design method of the secondary lining using the GLI model is applied to the case of a shallow subway tunnel.

Study of Connection Process in Distribution systems using Genetic Algorithm (배전계통에서 GA를 이용한 접속변경 순서 결정 방법)

  • Oh, Seon;Seo, Jeong-Kap
    • Journal of Satellite, Information and Communications
    • /
    • v.6 no.1
    • /
    • pp.6-11
    • /
    • 2011
  • In this paper presents a new approach to evaluate reliability indices of electric distribution systems using genetic Algorithm (GA). The use of reliability evaluation is an important aspect of distribution system planning and operation to adjust the reliability level of each area. In this paper, the reliability model is based on the optimal load transferring problem to minimize load generated load point outage in each sub-section. This approach is one of the most difficult procedures and become combination problems. A new approach using GA was developed for this problem. GA is a general purpose optimization technique based on principles inspired from the biological evolution using metaphors of mechanisms such as natural selection, genetic recombination and survival of the fittest. Test results for the model system with 24 nodes 29 branches are reported in the paper.

Improved modeling of equivalent static loads on wind turbine towers

  • Gong, Kuangmin;Chen, Xinzhong
    • Wind and Structures
    • /
    • v.20 no.5
    • /
    • pp.609-622
    • /
    • 2015
  • This study presents a dynamic response analysis of operational and parked wind turbines in order to gain better understanding of the roles of wind loads on turbine blades and tower in the generation of turbine response. The results show that the wind load on the tower has a negligible effect on the blade responses of both operational and parked turbines. Its effect on the tower response is also negligible for operational turbine, but is significant for parked turbine. The tower extreme responses due to the wind loads on blades and tower of parked turbine can be estimated separately and then combined for the estimation of total tower extreme response. In current wind turbine design practice, the tower extreme response due to the wind loads on blades is often represented as a static response under an equivalent static load in terms of a concentrated force and a moment at the tower top. This study presents an improved equivalent static load model with additional distributed inertial force on tower, and introduces the square-root-of-sum-square combination rule, which is shown to provide a better prediction of tower extreme response.

Analysis of the Static Characteristics of High-Rise Structures With Twisted Shape (비틀어진 형상(Twisted)을 가지는 고층 구조물의 역학적 특성 분석)

  • Lee, Da-Hye;Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.4
    • /
    • pp.93-100
    • /
    • 2020
  • In this study, structural characteristics were analyzed by combining gravity load and lateral loads such as seismic loads through static analysis of example structures, and the static characteristics of the twisted structure according to the plane rotation angle were also analyzed. Example structures were selected as regular structure, and twisted structures; 1.0, 2.0, and 3.0 degree angle of rotation per story, and static analysis was performed by the load combination case 1 and case 2. As a result the story drift ratio of the twisted-shaped structure also increased as the plane rotation angle per story increased. The eccentricity according to the load combination was the highest in the lower stories of all analysis models, and the eccentricity was found to be larger as the rotation angle decreased. The twisted-shaped structure was more responsible for the bending moment of the column than the regular structure, and the vertical member axial force of all analysis models was almost similar.

The Characteristic Analysis on the Combination of Air and Half-long Taper Spring (반쪽 롱테이퍼 스프링과 공기스프링의 조합시 특성해석 연구)

  • Kwon, H. H.;Choi, S. J.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.5
    • /
    • pp.113-119
    • /
    • 1998
  • Air spring has the advantages to be nearly constant in natural frequency inspite of load change, and to be able to control height level. Half-long taper spring has the advantages to function as well link as spring. Thus to utilize two type spring's advantages, half-long taper spring and air spring are combined and used. In this study, the theory to calculate the characteristics in combination is developed.

  • PDF