• Title/Summary/Keyword: Load Transient Response

Search Result 226, Processing Time 0.022 seconds

Minimum Time Regulation of DC-DC Converters in Damping Mode with an Optimal Adjusted Sliding Mode Controller

  • Jafarian, Mohammad Javad;Nazarzadeh, Jalal
    • Journal of Power Electronics
    • /
    • v.12 no.5
    • /
    • pp.769-777
    • /
    • 2012
  • In this paper, a new development in the time optimal control theory in sliding mode control systems for multi-quadrant buck converters with a variable load is presented. In general, the closed-loop time optimal control system is applied to multi-quadrant buck converters for output regulation, so that an optimal switching surface is obtained. Moreover, an adjusted optimal sliding mode controller is suggested which adjusts the controller parameters to give an optimal switching surface. In addition, a description of the transient response of the closed-loop system is proposed and used to damp any output or input disturbances in minimum time. Numerical simulations and experimental results are employed to demonstrate that the output regulation time and transient performances of dc/dc converters using the proposed technique are improved effectively when compared to the classical sliding mode control method.

An Experimental Study on the Thermal Performance of a Concentric Annular Heat Pipe

  • Boo Joon Hong;Park Soo Yong;Kim Do Hyoung
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.1036-1043
    • /
    • 2005
  • Concentric annular heat pipes (CAHP) were fabricated and tested to investigate their thermal characteristics. The CAHPs were 25.4 mm in outer diameter and 200 mm in length. The inner surface of the heat pipes was covered with screen mesh wicks and they were connected by four bridge wicks to provide liquid return path. Three different heat pipes were fabricated to observe the effect of change in diameter ratios between 2.31 and 4.23 while using the same outer tube dimensions. The major concern of this study was the transient response as well as isothermal characteristics of the heat pipe outer surface, considering the application as uniform heating device. A better performance was achieved as the diameter ratio increased. For the thermal load of 180 W, the maximum temperature difference on the outer surface in the axial direction of CAHP was $2.3^{\circ}C$ while that of the copper block of the same outer dimension was $5.9^{\circ}C.$ The minimum thermal resistance of the CAHP was measured to be $0.004^{\circ}C/W.$ In regard to the transient response during start-up, the heat pipe showed almost no time lag to the heat source, while the copper block of the same outer dimensions exhibited about 25 min time lag.

A Basic Study on Structural Health Monitoring using the Kalman Filter (칼만 필터를 이용한 구조 안전성 모니터링에 관한 기초 연구)

  • Park, Myong-Jin;Kim, Yooil
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.3
    • /
    • pp.175-181
    • /
    • 2020
  • For the success of a structural integrity management, it is essential to acquire structural response data at some critical locations with limited number of sensors. In this study, the structural response of numerical model was estimated by data fusion approach based on the Kalman filter known as stochastic recursive filter. Firstly, transient direct analysis was conducted to calculate the acceleration and strain of the numerical standing beam model, then the noise signals were mixed to generate the numerical measurement signals. The acceleration measurement signal was provided to the Kalman filter as an information on the external load, and the displacement measurement, which was transformed from the strain measurement by using strain-displacement conversion relationship, was provided into the Kalman filter as an observation information. Finally, the Kalman filter estimated the displacement by combining both displacements calculated from each numerically measured signal, then the estimated results were compared with the results of the transient direct analysis.

Hydraulic Shock Load Response of Activated Sludge Process (활성슬러지공정의 수리학적 충격부하 반응)

  • Whang, Gye Dae;Kim, Min Ho;Ko, Sae;Cho, Chul Hwi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.3
    • /
    • pp.67-78
    • /
    • 1997
  • The objective of study was to examine to transient response of hydraulic shock loading in activated sludge process for treatment of municipal sewage. The general experiment approach was to operate the system under steady-state(pre-shock), then to apply step changes during 24hours in fourfold hydraulic shock loading at the same organic loading. Performance was assessed in both the transient state and the new steady-state(post-shock). Three bench scale activated sludge reactors were operated to investigate the effect of fourfold hydraulic shock loading on TSS and COD removal efficiency. In activated sludge reactors operated with 13hours and 7hours of HRT, effluent quality of all reactors was not changed for few effects, and also showed no foaming and no sludge bulking. Those results are the same as sludge withdrawn reactors. The effect of fourfold hydraulic shock loading on the activated sludge reactors operated with 3hours of HRT was most severe. The effluent quality was deteriorated significantly and generate foaming in reactors. Less than 24hours after the fourfold shock loading applied, the activated sludge system seemed to attain a new steady-state condition as show by effluent.

  • PDF

Control techniques for improving response of the AVR (AVR의 응답속도개선을 위한 제어기법에 관한 연구)

  • Lee, Hyung-ki;Kim, Song-Hyun;Kim, Hyun-soo;Kim, Gi-ryang;Kim, Gwan-Hyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.11
    • /
    • pp.2534-2539
    • /
    • 2015
  • Method for regulating voltage using a generator voltage regulating device (AVR) is divided in an existing analog system and a digital replacement. Typically, to adjust the voltage by using a brushless excitation system of the type to be reduced for a voltage change under all. The control method of the AVR as a PID (proportional-integral-differential) control method is widely used. However, the control scheme is to reduce the transient response of the control parameters of the controller to the control object. Therefore, if the control target should change, there is a problem, reset the parameters of the controller again. In this study, without having to reset the parameters of the controller for the parameter variations to be controlled iPID (intelligent PID) using a controller designed to obtain a generator AVR system voltage variation is small in response to full load is applied to and through simulations and experiments improved transient response.

A Capacitorless Low-Dropout Regulator With Enhanced Response Time (응답 시간을 향상 시킨 외부 커패시터가 없는 Low-Dropout 레귤레이터 회로)

  • Yeo, Jae-Jin;Roh, Jeong-Jin
    • Journal of IKEEE
    • /
    • v.19 no.4
    • /
    • pp.506-513
    • /
    • 2015
  • In this paper, an output-capacitorless, low-dropout (LDO) regulator is designed, which consumes $4.5{\mu}A$ quiescent current. Proposed LDO regulator is realized using two amplifier for good load regulation and fast response time, which provide high gain, high bandwidth, and high slew rate. In addition, a one-shot current boosting circuit is added for current control to charge and discharge the parasitic capacitance at the pass transistor gate. As a result, response time is improved during load-current transition. The designed circuit is implemented through a $0.11-{\mu}m$ CMOS process. We experimentally verify output voltage fluctuation of 260mV and recovery time of $0.8{\mu}s$ at maximum load current 200mA.

A Study on the Transient Response and Impact Coefficient Calculation of PCB Handler (PCB Handler의 과도응답해석 및 충격계수 산출 연구)

  • Lee, Byoung-Hwa;Kwon, Soon Ki;Koh, Man-Soo
    • Journal of Digital Convergence
    • /
    • v.15 no.7
    • /
    • pp.223-229
    • /
    • 2017
  • Europe, the US and Japan have acquired test results on impact coefficient for a long time and applied it to equipment design to secure safety of structures. However, Korean enterprises use the impact factor held by advanced business to design equipment as it is difficult for them to obtain it through tests. In this paper, NX/NASTRAN, was used to perform static load analysis and impact load analysis of a PCB Handler, semiconductor test equipment, and the result was employed to study how to calculate the impact coefficient with the finite element analysis. The calculation method was applied to the JIS(Japanese Industrial Standard), and the impact coefficient of the PCB handler was calculated as 1.27 for the sudden start or stop. The impact coefficient generated by the analysis is expected to make a great contribution to the industry as it can be used to improve the equipment structure and develop on existing equipment in the future.

Parallel Operation of Microgrid Inverters Based on Adaptive Sliding-Mode and Wireless Load-Sharing Controls

  • Zhang, Qinjin;Liu, Yancheng;Wang, Chuan;Wang, Ning
    • Journal of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.741-752
    • /
    • 2015
  • This study proposes a new solution for the parallel operation of microgrid inverters in terms of circuit topology and control structure. A combined three-phase four-wire inverter composed of three single-phase full-bridge circuits is adopted. Moreover, the control structure is based on adaptive three-order sliding-mode control and wireless load-sharing control. The significant contributions are as follows. 1) Adaptive sliding-mode control performance in inner voltage loop can effectively reject both voltage and load disturbances. 2) Virtual resistive-output-impedance loop is applied in intermediate loop to achieve excellent power-sharing accuracy, and load power can be shared proportionally to the power rating of the inverter when loads are unbalanced or nonlinear. 3) Transient droop terms are added to the conventional power outer loop to improve dynamic response and disturbance rejection performance. Finally, theoretical analysis and test results are presented to validate the effectiveness of the proposed control scheme.

A Novel Control Algorithm of a Three-phase Four-wire PV Inverter with Imbalance Load Compensation Function

  • Le, Dinh-Vuong;Kim, Chang-Soon;Go, Byeong-Soo;Park, Minwon;Yu, In-Keun
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1131-1137
    • /
    • 2018
  • In this paper, the authors suggest a new control algorithm for a three-phase four-wire photovoltaic (PV) inverter with imbalance load compensation function using conventional proportional-integral (PI) controllers. The maximum power of PV panel is calculated by the MPPT control loop. The reference varying signals of current controllers are transformed to two different rotating frames where they become constant signals. Then simple PI controllers are applied to achieve zero steady-state error of the controllers. The proposed control algorithm are modeled and simulated with imbalance load configuration to verify its performance. The simulation results show that the maximum PV power is transferred to the grid and the imbalance power is compensated successfully by the proposed control algorithm. The inverter has a fast response (~4 cycles) during the transient period. The proposed control algorithm can be effectively utilized to the three-phase four-wire inverter with imbalance load compensation function.

Dynamic behavior of H-shape tall building subjected to wind loading computed by stochastic and CFD methodologies

  • Lucas Willian Aguiar Mattias;Joao Elias Abdalla Filho
    • Wind and Structures
    • /
    • v.37 no.3
    • /
    • pp.229-243
    • /
    • 2023
  • This study analyzes the response of a tall building with an H-shaped cross-section when subjected to wind loading generated by the same H-shape. As normative standards usually adopt regular geometries for determining the wind loading, this paper shows unpublished results which compares results of the dynamic response of H-shaped buildings with the response of simplified section buildings. Computational Fluid Dynamics (CFD) is employed to determine the steady wind load on the H-shaped building. The CFD models are validated by comparison with wind tunnel test data for the k-ε and k-ω models of turbulence. Transient wind loading is determined using the Synthetic Wind Method. A new methodology is presented that combines Stochastic and CFD methods. In addition, time-history dynamic structural analysis is performed using the HHT method for a period of 60 seconds on finite element models. First, the along-wind response is studied for wind speed variations. The wind speeds of 28, 36, 42, and 50 m/s at 0° case are considered. Subsequently, the dynamic response of the building is studied for wind loads at 0°, 45°, and 90° with a wind speed of 42 m/s, which approximates the point of resonance between gusts of wind and the structure. The response values associated with the first two directions for the H-shaped building are smaller than those for the R-shaped (Equivalent Rectangular Shape) one. However, the displacements of the H-shaped building associated with the latter wind load are larger.