Browse > Article
http://dx.doi.org/10.6113/JPE.2015.15.3.741

Parallel Operation of Microgrid Inverters Based on Adaptive Sliding-Mode and Wireless Load-Sharing Controls  

Zhang, Qinjin (Marine Engineering College, Dalian Maritime University)
Liu, Yancheng (Marine Engineering College, Dalian Maritime University)
Wang, Chuan (Marine Engineering College, Dalian Maritime University)
Wang, Ning (Marine Engineering College, Dalian Maritime University)
Publication Information
Journal of Power Electronics / v.15, no.3, 2015 , pp. 741-752 More about this Journal
Abstract
This study proposes a new solution for the parallel operation of microgrid inverters in terms of circuit topology and control structure. A combined three-phase four-wire inverter composed of three single-phase full-bridge circuits is adopted. Moreover, the control structure is based on adaptive three-order sliding-mode control and wireless load-sharing control. The significant contributions are as follows. 1) Adaptive sliding-mode control performance in inner voltage loop can effectively reject both voltage and load disturbances. 2) Virtual resistive-output-impedance loop is applied in intermediate loop to achieve excellent power-sharing accuracy, and load power can be shared proportionally to the power rating of the inverter when loads are unbalanced or nonlinear. 3) Transient droop terms are added to the conventional power outer loop to improve dynamic response and disturbance rejection performance. Finally, theoretical analysis and test results are presented to validate the effectiveness of the proposed control scheme.
Keywords
Adaptive sliding-mode control; Droop control; Microgrid; Power electronic converter; Unbalanced load;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 K. Naheem, Y.-S. Choi, F. Mwasilu, H. H. Choi, and J.-W. Jung, “Design and stability analysis of a fuzzy adaptive SMC system for three-phase UPS inverter,” Journal of Power Electronics, Vol. 14, No. 4, pp. 704-711, Jul. 2011.   DOI   ScienceOn
2 T. Hornik, and Q. C. Zhong, “Parallel PI voltage–H∞ current controller for the neutral point of a three-phase inverter,” IEEE Trans. Ind. Electron., Vol. 60, No. 4, pp. 1335-1343, Apr. 2013.   DOI   ScienceOn
3 N. Altin, and I. Sefa, “dSPACE based adaptive neuro-fuzzy controller of grid interactive inverter,” Energy Convention and Management, Vol. 56, pp. 130-139, Apr. 2012.   DOI   ScienceOn
4 R. Aghatehrani, and R. Kavasseri, “Sensitivity-analysis -based sliding mode control for voltage regulation in microgrids,” IEEE Trans. Sustain. Enerergy, Vol. 4, No. 1, pp. 50-57, Jan. 2013.   DOI   ScienceOn
5 D. De and V. Ramanarayanan, “A proportional + multiresonant controller for three-Phase four-wire high-frequency link inverter,” IEEE Trans. Power Electron., Vol. 25, No. 4, pp. 899-906, Apr, 2010.   DOI   ScienceOn
6 Y. A. I. Mohamed, H.H. Zeineldin, M. M. A. Salama, and R. Seethapathy, “Seamless formation and robust control of distributed generation microgrids via direct voltage control and optimized dynamic power sharing,” IEEE Trans. Power Electron., Vol.27, No. 3, pp. 1283-1294, Mar. 2012.   DOI   ScienceOn
7 R. Majumder, “Some aspects of stability in microgrids,” IEEE Trans. Power Syst., Vol. 28, No.3, pp. 3243-3252, Aug. 2013.   DOI   ScienceOn
8 J. M. Guerrero, J. Matas, L. G. Vicuna, M. Castilla, and J. Miret, “Decentralized control for parallel operation of distributed generation inverters using resistive output impedance,” IEEE Trans. Ind. Electron., Vol. 54, No. 2, pp. 994-1004, Apr. 2007.   DOI   ScienceOn
9 M. B. Delghavi and A. Yazdani, “Islanded-mode control of electronically coupled distributed-resource units under unbalanced and nonlinear load conditions,” IEEE Trans. Power Del., Vol. 26, No. 2, pp. 661-673, Apr. 2011.   DOI   ScienceOn
10 Z. Guo, D. Sha, and X. Liao, “Wireless paralleled control strategy of three-phase inverter modules for islanding distributed generation systems,” Journal of Power Electronics, Vol. 13, No. 3, pp. 479-486, May 2013.   DOI   ScienceOn
11 T. L. Vandoorn, B. Meersman, J. D. M. D. Kooning, and L. Vandevelde, “Directly-coupled synchronous generators with converter behavior in islanded microgrids,” IEEE Trans. Power Syst., Vol. 27, No. 3, pp. 1395-1406, Aug. 2012.   DOI   ScienceOn
12 S. Mehdi, J. Alireza, C. V. Juan, and J. M. Guerrero, “Autonomous voltage unbalance compensation in an islanded droop-controlled microgrid,” IEEE Trans. Ind. Electron., Vol. 60, No. 4, pp. 1390-1402, Apr. 2013.   DOI
13 A. Hasanzadeh, O. C. Onar, H. Mokhtari, and A. Khaligh, “A proportional-resonant controller-based wireless control strategy with a reduced number of sensors for parallel-operated UPSs,” IEEE Trans. Power Del., Vol. 25, No. 1, pp. 468-478, Jan. 2010.   DOI   ScienceOn
14 S. Dasgupta, S. N. Mohan, S. K. Sahoo, and S. K. Panda, “Lyapunov function-based current controller to control active and reactive power flow from a renewable energy source to a generalized three-phase microgrid system,” IEEE Trans. Ind. Electron., Vol. 60, No. 2, pp. 799-813, Feb. 2013.   DOI   ScienceOn
15 H. Bevrani, T. Ise, and Y. Miura, “Virtual synchronous generators: a survey and new perspectives,” International Journal of Electrical Power and Energy Systems, Vol. 54, pp. 244-254, 2014.   DOI   ScienceOn
16 C. N. Rowe, T. J. Summers, R. E. Betz, and D. J. Comforth, and T. G. Moore, “Arctan power–frequency droop for improved microgrid stability,” IEEE Trans. Power Electron., Vol. 28, No. 8, pp. 3747-3759, Aug. 2013.   DOI   ScienceOn
17 Y. Mohamed and E. F. El-Saadany, “Adaptive decentralized droop controller to preserve power sharing stability of paralleled inverters in distributed generation microgrids,” IEEE Trans. Power Electron., Vol. 23, No. 6, pp. 2806-2816, Nov. 2008.   DOI   ScienceOn
18 C. Cho, J. H. Jeon, J. Y. Kim, S. Kwon, K. Park, and S. Kim, “Active synchronizing control of a microgrid, ” IEEE Trans. Power Electron., Vol. 26, No. 12, pp. 3707-3719, Dec. 2011.   DOI   ScienceOn
19 D. De and V. Ramanarayanan, “Decentralized parallel operation of inverters sharing unbalanced and nonlinear loads,” IEEE Trans. Power Electron., Vol. 25, No. 12, pp. 3015-3025, Dec. 2010.   DOI   ScienceOn
20 J. M. Guerrero, L. G. Vicuña, J. Matas, M. Castilla, and J. Miret, “Output impedance design of parallel-connected UPS inverters with wireless load-sharing control, ” IEEE Trans. Ind. Electron., Vol. 52, No. 4, pp. 1126-1135, Aug. 2005.   DOI   ScienceOn
21 J. Kim, J. M. Guerrero, P. Rodriguez, R. Teodorescu, and K. Nam, “Mode adaptive droop control with virtual output impedances for an inverter-based flexible AC microgrid,” IEEE Trans. Power Electron., Vol. 26, No. 3, pp. 689-701, Mar. 2011.   DOI   ScienceOn
22 R. H. Lasseter, J. H. Eto, B. Schenkman, J. Stevens, H. Vollkommer, D. Klapp, E. Linton, H. Hurtado, and J. Roy, “CERTS microgrid laboratory test bed,” IEEE Trans. Power Del., Vol. 26, No. 1, pp. 325-332, Jan. 2011.   DOI   ScienceOn
23 X. Wang, J. M. Guerrero, F. Blaabjerg, and Z. Chen, “A review of power electronics based microgrids,” Journal of Power Electronics, Vol. 12, No. 1, pp. 181-192, Jan. 2012.   DOI   ScienceOn
24 E. A. A. Coelho, P. C. Cortizo, and P. F. D. Garcia, “Small-signal stability for parallel-connected inverters in stand-alone AC supply systems,” IEEE Trans. Ind. App., Vol. 38, No. 1, pp. 533-542, Mar. 2002.   DOI   ScienceOn
25 P. H. Divshali, A. Alimardani, S. H. Hosseinian, and M. Abedi, “Decentralized cooperative control strategy of microsources for stabilizing autonomous VSC-based microgrids,” IEEE Trans. Power Syst., Vol. 27, No. 4, pp. 1949-1959, Nov. 2012.   DOI   ScienceOn
26 B. Zhao, X. S. Zhang, and J. Chen, “Integrated microgrid laboratory system,” IEEE Trans. Power Syst., Vol. 27, No. 4, pp. 2175-2185, Nov. 2012.   DOI   ScienceOn
27 J. Rocabert, A. Luna, F. Blaabjerg, and P. rodriguez, “Control of power converters in AC microgrids,” IEEE Trans. Power Electron., Vol. 27, No. 11, pp. 4734-4749, Nov. 2012.   DOI   ScienceOn