• Title/Summary/Keyword: Load Stress Testing

Search Result 208, Processing Time 0.021 seconds

S-N Curve Estimation of a KTX Structure for an Accelerated Life Testing (가속수명시험을 위한 KTX 구조물의 S-N 선도 추정)

  • Jung, Dal-Woo;Choi, Nak-Sam;Park, Su-Han
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.384-389
    • /
    • 2008
  • An accelerated fatigue test is essentially required to maintain the reliability of the actual structure of KTX under operation conditions. However, actual fatigue life cannot be obtained if specimens are not adequate to the conventional fatigue test. Moreover component maker did not provide data of loading stress (S) - cycles at the failure (N). In this study, we suggest a prediction method of the S-N curve for establishing an accelerating test under various load levels. Load history was acquired from the field tests. A Rainflow method was used on the cycle counting of the field load data, and then, an S-N curve was obtained through the iteration process under the condition that the damage index satisfies to 1 in the Miner's rule.

  • PDF

Comparison and Evaluation of Load Test Methods for Aluminum Car Body (알루미늄 차체 하중 시험 방법에 관한 비교 평가)

  • 서승일;박춘수;신병천
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.1
    • /
    • pp.32-36
    • /
    • 2004
  • Aluminum carbody for rolling stocks is light and perfectly recycled, but includes severe defects which are very dangerous to fatigue strength. Static load test has been performed up to date to assess structural safety of the carbody. However, static load test is not sufficient to evaluate fatigue strength of the carbody, because fatigue failure is caused by dynamic load. In this study, the established load test methods for carbody are described and the characteristics of the methods are discussed. Also, a testing method to simulate dynamic loading condition is proposed for evaluation of fatigue strength of the carbody. The results by the proposed testing method are compared with the results by the static load test and new findings are discussed.

Plastic Displacement Estimates in Creep Crack Growth Testing (크리프 균열 성장 실험을 위한 소성 변위 결정법)

  • Huh Nam-Su;Yoon Kee-Bong;Kim Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.10 s.253
    • /
    • pp.1219-1226
    • /
    • 2006
  • The ASTM test standard recommends the use of the compact tension specimen for creep crack growth rates measurement. In the creep crack growth rate test, the displacement rate due to creep is obtained by subtracting the contribution of elastic and plastic components from the total load line displacement rate based on displacement partitioning method fur determining $C^*-integral$, which involves Ramberg-Osgood (R-O) fitting procedures. This paper investigates the effect of the R-O fitting procedures on plastic displacement rate estimates in creep crack growth testing, via detailed two-dimensional and three-dimensional finite element analyses of the standard compact tension specimen. Four different R-O fitting procedures are considered; (i) fitting the entire true stress-strain data up to the ultimate tensile strength, (ii) fitting the true stress-strain data from 0.1% strain to 0.8 of the true ultimate strain, (iii) fitting the true stress-strain data only up to 5% strain, and (iv) fitting the engineering stress-strain data. It is found that the last two procedures provide reasonably accurate plastic displacement rates and thus should be recommended in creep crack growth testing. Moreover, several advantages of fitting the engineering stress-strain data over fitting the true stress-strain data only up to 5% strain are discussed.

Calibration of Contact Depth for Evaluating Residual Stress using Instrumented Indentation Testing (연속압입시험법을 이용한 원전구조물의 잔류응력 평가를 위한 접촉깊이의 보정)

  • Kim, Young-Cheon;Kang, Seung-Kyun;Ahn, Hee-Jun;Kim, Kwang-Ho;Kwon, Dongil
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.7 no.1
    • /
    • pp.41-47
    • /
    • 2011
  • Residual stress is the key parameter for reliability and lifetime assessment because it can reduce the fatigue strength and fracture properties of industrial structures. Recently, instrumented indentation testing (IIT) has been widely used for evaluating it, since it does not need specific specimen and time-consuming procedure. However, conventional Oliver-Pharr method, which is used for calibrating contact depth to analyze indentation load-depth curve, cannot estimate plastic pile-up between indenter and surface of specimen. Here, we introduce f parameter which is the ratio of contact depth and maximum depth, to consider pile-up height. And, its application for evaluating residual stress of weldment is introduced.

Investigation of One-dimensional Stress-Release Mechanism in Sand from Model Test

  • Zhuang, Li;Kim, Dongwook;Kim, Ukgie
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.10
    • /
    • pp.17-27
    • /
    • 2013
  • This paper explores stress release induced by unloading in dry sand. A series of model tests were carried out to measure stresses developed in testing sand during loading and those released during unloading for different boundary conditions. It was found that stress in the sand increased linearly with applied load. At the onset of unloading, almost no stress release was observed. Significant stress release took place when the shear stress in the sand induced by unloading exceeded the frictional resistance and caused movement of sand particles. The initiation and the magnitude of stress release depend on the stress condition prior to unloading, the decrease of external load, and also the frictional resistance in sand. A new conceptual stress-release model was next developed based on the model test results by considering the fundamental frictional behavior of granular materials.

Structural Performance of an Advanced Compsites Bridge Superstructure for Rapid Installation (급속시공용 복합신소재 교량상부구조의 구조 성능)

  • Ji, Hyo-Seon
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.1 no.1
    • /
    • pp.34-45
    • /
    • 2010
  • This paper describes the design, manufacturing process, testing, application, and assessment of capacity-ratings of the first all advanced composites bridge on a public highway system. In order to verify the bridge design prior to the field application, a sub-scale bridge superstructure was built and tested in the laboratory. The field load test results were compared with those of the finite element analysis for the verification of validity. To investigate its in-service performance, field load testing and visual inspections were conducted under an actual service environment. The paper includes the presentation and discussion for advanced composites bridge capacity rating based on the stress modification coefficients obtained from the test results. The test result indicates that the advanced composites bridge has no structural problems and is structurally performing well in-service as expected. Since these composite materials are new to bridge applications, reliable data is not available for their in-service performance. The results may provide a baseline data for future field advanced composites bridge capacity rating assessments and also serve as part of a long-term performance of advanced composites bridge.

  • PDF

On Study the Safety Diagnosis of Carbody Structure for Crashed Electric Multiple Units (사고전동차 구조체의 안전진단에 관한 고찰)

  • Bae Dae-Sung;Park Geun-Soo;Chung Jong-Duk
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.3
    • /
    • pp.253-259
    • /
    • 2005
  • This paper describes 3D Dimensional Measurement(EDM testing) and tensile testing results of carbody structure for crashed EMU(Electric Multiple Units). Tensile tests were performed on two different types of specimens in order to evaluate the strength changes before and after damages, obtained from plastic deformed area and nondeformed region of the crashed EMU. And Structural analysis of EMU was performed for the criteria of safety assessment. Structural analysis using commercial I-DEAS software provided important information on the stress distribution and load transfer mechanisms as well as the amount of damages during rolling stock crash. The testing results have been used to provide the critical information for the criteria of safety diagnosis.

Change in Magnetic Flux in the Air Due to Load (하중에 의한 공기중 자속의 변화)

  • Lee, Jeong-Hee
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.1
    • /
    • pp.21-26
    • /
    • 2009
  • In order to determine the effective way of measuring the Mode I stress intensity factor($K_1$) by means of the alternating current potential drop(ACPD) technique for a material containing a two-dimensional surface crack, the change in magnetic flux in the air due to load was studied theoretically and experimentally. The magnetic flux in the air between crack surfaces is uniform and is not changed by increasing the load in the specimen and experimental results are the same as those obtained from theoretical analysis. Therefore, the change in potential drop due to load in the measuring system which was designed to induce a large amount of electro-motive force was caused by the change in internal inductance of material and the change in the mutual inductance concerned with internal inductance of material.

Determination of True Resistance from Load Transfer Test Performed on a PHC Pile (PHC 말뚝의 하중전이실험을 통한 참 지지력의 산정)

  • Kim, Sung-Ryul;Chung, Sung-Gyo;Dzung, N.T.
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.11
    • /
    • pp.113-122
    • /
    • 2006
  • Although a number of static pile load tests have been performed in this country, re-consideration on the interpretation and loading method is needed, because of their less usefulness in practice. For this study, a static loading testing was performed for a long instrumented PHC pile, which was installed in sand layer overlying thick soft clay. The shaft resistance of the pile had been monitored for a long time after installation, and then the static load testing was performed by the quick load test, unlike the recent Korean practice. Using the measured data, the elastic modulus of pile, residual stress and true resistance on the pile were determined. In the event, it was found that the residual stress on the pile, which remained prior to the static loading, significantly affects the shaft and toe resistances. Also, it was realized that the setup effect for the long pile is significant.

Numerical simulation of compressive to tensile load conversion for determining the tensile strength of ultra-high performance concrete

  • Haeri, Hadi;Mirshekari, Nader;Sarfarazi, Vahab;Marji, Mohammad Fatehi
    • Smart Structures and Systems
    • /
    • v.26 no.5
    • /
    • pp.605-617
    • /
    • 2020
  • In this study, the experimental tests for the direct tensile strength measurement of Ultra-High Performance Concrete (UHPC) were numerically modeled by using the discrete element method (circle type element) and Finite Element Method (FEM). The experimental tests used for the laboratory tensile strength measurement is the Compressive-to-Tensile Load Conversion (CTLC) device. In this paper, the failure process including the cracks initiation, propagation and coalescence studied and then the direct tensile strength of the UHPC specimens measured by the novel apparatus i.e., CTLC device. For this purpose, the UHPC member (each containing a central hole) prepared, and situated in the CTLC device which in turn placed in the universal testing machine. The direct tensile strength of the member is measured due to the direct tensile stress which is applied to this specimen by the CTLC device. This novel device transferring the applied compressive load to that of the tensile during the testing process. The UHPC beam specimen of size 150 × 60 × 190 mm and internal hole of 75 × 60 mm was used in this study. The rate of the applied compressive load to CTLC device through the universal testing machine was 0.02 MPa/s. The direct tensile strength of UHPC was found using a new formula based on the present analyses. The numerical simulation given in this study gives the tensile strength and failure behavior of the UHPC very close to those obtained experimentally by the CTLC device implemented in the universal testing machine. The percent variation between experimental results and numerical results was found as nearly 2%. PFC2D simulations of the direct tensile strength measuring specimen and ABAQUS simulation of the tested CTLC specimens both demonstrate the validity and capability of the proposed testing procedure for the direct tensile strength measurement of UHPC specimens.