• 제목/요약/키워드: Load Row Analysis

검색결과 35건 처리시간 0.021초

자동차 휠 베어링 유닛의 장수명 설계 (A Design of an Automotive Wheel Bearing Unit for Long Life)

  • 윤기찬;최동훈
    • 대한기계학회논문집A
    • /
    • 제24권2호
    • /
    • pp.319-328
    • /
    • 2000
  • This paper presents a new design method of the 1 generation wheel bearing unit using a numerical optimization technique in order to increase bearing fatigue life. For calculating the fatigue life, a method of load analysis is studied on the automotive wheel bearing system. The design variables selected are ball size, initial contact angle, number of balls, pitch diameter, pre-load, and distance between ball centers. The method of feasible directions in ADS (Automated Design Synthesis) is utilized to automatically find the optimum design variables. To validate the design method, a computer program is developed and applied to a practical passenger car model. The optimum design results demonstrated the effectiveness of the proposed design method showing that the system life of the optimally designed wheel bearing unit is enhanced in comparison with that of the initial ones within the given available design space.

Derivation of Distributed Generation Impact Factor in a Networked System in Case of Simultaneous Outputs of Multiple Generation Sites

  • Lim, Jung-Uk;Runolfsson, Thordur
    • 조명전기설비학회논문지
    • /
    • 제20권9호
    • /
    • pp.78-83
    • /
    • 2006
  • A new measure, the distributed generation impact factor (DGIF), is used for evaluating the impact of newly introduced distributed generators on a networked distribution or a transmission system. Distribution systems are normally operated in a radial structure. But the introduction of distributed generation needs load flow calculation to analyze the networked system. In the developed framework, the potential share of every generation bus in each line flow of a networked system can be directly evaluated. The developed index does not require the solution of power flow equations to evaluate the effect of the distributed generation. The main advantage of the developed method lies in its capability of considering simultaneous outputs of multiple generation sites.

수력 원통형 터빈 가이드 베어링의 저부하/저편심 성능향상 설계 - 패드 선단 테이퍼의 도입 (Low-Load/Low-Eccentricity Performance Improvement Designs for Hydro Power Application of Cylindrical Turbine Guide Bearings - Introduction of Pad Leading-Edge Tapers)

  • 이안성;장선용
    • Tribology and Lubricants
    • /
    • 제33권2호
    • /
    • pp.65-70
    • /
    • 2017
  • In vertical hydro/hydraulic power turbine-generator applications, traditionally, cylindrical turbine guide bearings (TGBs) are widely used to provide turbine runner shafts with smooth rotation guides and supports. All existing cylindrical TGBs with simple plain pads have drawbacks such as having no pressure generation and film stiffness at the no-load condition and in addition, at the low-load/low-eccentricity condition, having very low film stiffness values and lacking design credibility in the stiffness values themselves. In this paper, in order to fundamentally improve the low-load/low-eccentricity performance of conventional cylindrical TGBs and thus enhance their design-application availability and usefulness, we propose to introduce a rotation-directional leading-edge taper to each partitioned pad, i.e., a pad leading-edge taper. We perform a design analysis of lubrication performance on $4-Pad{\times}4-Row$ cylindrical TGBs to verify an engineering/technical usefulness of the proposed pad leading-edge taper. Analysis results show that by introducing the leading-edge taper to each pad of the cylindrical TGB one can expect a constant high average direct stiffness with a high degree of design credibility, regardless of load value, even at the low-load/low-eccentricity condition and also control the average direct stiffness value by exploring the taper height as a design parameter. Therefore, we conclude that the proposed pad leading-edge tapers are greatly effective in more accurately predicting and controlling rotordynamic characteristics of vertical hydro-power turbine-generator rotor-bearing systems to which cylindrical TGBs are applied.

Stress and fatigue analysis of major components under dynamic loads for a four-row tractor-mounted radish collector

  • Khine Myat Swe;Md Nasim Reza;Milon Chowdhury;Mohammod Ali;Sumaiya Islam;Sang-Hee Lee;Sun-Ok Chung;Soon Jung Hong
    • 농업과학연구
    • /
    • 제49권2호
    • /
    • pp.269-284
    • /
    • 2022
  • The development of radish collectors has the potential to increase radish yields while decreasing the time and dependence on human labor in a variety of field activities. Stress and fatigue analyses are essential to ensure the optimal design and machine life of any agricultural machinery. The objectives of this research were to analyze the stress and fatigue of major components of a tractor-mounted radish collector under dynamic load conditions in an effort to increase the design dependability and dimensions of the materials. An experiment was conducted to measure the shaft torque of stem-cutting and transferring conveyor motors using rotary torque sensors at different tractor ground speeds with and without a load. The Smith-Watson-Topper mean stress equation and the rain-flow counting technique were utilized to determine the required shear stress with the distribution of the fatigue life cycle. The severity of the operation was assessed using Miner's theory. All running conditions produced more than 107 of high cycle fatigue strength. Furthermore, the highest severity levels for motor shafts used for stem cutting and transferring and for transportation joints and cutting blades were 2.20, 4.24, 2.07, and 1.07, and 1.97, 3.81, 1.73, and 1.07, respectively, with and without a load condition, except for 5.24 for a winch motor shaft under a load. The stress and fatigue analysis presented in this study can aid in the selection of the most appropriate design parameters and material sizes for the successful construction of a tractor-mounted radish collector, which is currently under development.

A Study on Hydrodynamic Stiffness Characteristics of Air Bearing for High Speed Spindle

  • Lee, J.Y.;Lee, D.W.;Seong, S.H.;Lee, Y.C.
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.115-116
    • /
    • 2002
  • This study was carried out as one of efforts to overcome difficulties in air bearing design due to low stiffness and low damping. Hydrodynamic effects on hydrodynamic stiffness of a fluid film in a high speed air bearing with tow-row air sources are investigated. The hydrodynamic effects by the high speed over DN 1,000,000 and eccentricity of a proceeding which are not considered in conventional design of an air bearing need to be reconsidered. The hydrodynamic effects, which dominantly influence on the load capacity of air bearing, are caused mainly by proceeding speed, eccentricity, and the source positions. The two-row source arrangement in the air bearing produces quite unique hydrodynamic effects with respect to pressure distribution of the air film. Optimal arrangement of the two-row sources improves performance of an air bearing in film reaction force and loading capacity of high speed spindles. This study compares the pressure distribution by numerical simulation as a function of eccentricity of proceeding and the source positions. The air source position 1/7L form one end of an air bearing was found to be superior to source position of 1/4L. The dynamic stiffness were obtained using a two-dimensional cutting method which can directly measure the cutting reaction forces and the displacements of the spindle in two directions using a tool dynamometer and transducer sensors. Heat generation in the air film can not be negligible over the speed of DN 2,000,000. In order to analysis effects of heat generation on the characteristics of air bearing, high cooling bearing spindle and low cooling bearing spindle were tested and compared. Characteristics of the frequency response of shaft and motion of run out errors were different for the spindle. The test results show that, in the case of low cooling bearing spindle, the stiffness became smaller due to heat generation. The results, which were obtained for high speed region, may be used as a design information for spindle which can be applied to precision devices such as ultra precision grinding and ultra high speed milling.

  • PDF

접합부 회전성능에 따른 중간 철골 모멘트 골조의 내진 성능 평가 - II 원인 평가 및 대안 (Seismic Performance Evaluation According to Rotation Capacity of Connections for Intermediate Steel Moment Frames - II. Cause Evaluation and Alternative)

  • 문기훈;한상환;하성진
    • 한국지진공학회논문집
    • /
    • 제18권2호
    • /
    • pp.105-115
    • /
    • 2014
  • This paper is the sequel of a companion paper (I. Performance Evaluation) evaluating the relation between the seismic performance of steel intermediate moment frames (IMFs) and the rotation capacity of connections. The evaluation revealed that the seismic performance of IMFs having the required minimum rotation capacity suggested in the current standards did not meet the seismic performance criteria presented in FEMA 695. Therefore, thepresent study evaluates the causes of the vulnerable seismic performance for steel IMFs and proposes alternatives to satisfy the seismic performance suggested in FEMA 695. To that goal, the results of nonlinear analysis, which are the pushover analysis and the incremental dynamic analysis, are examined and evaluated. As a result, high-rise IMF systems are seen to have the lower collapse margin ratio after connection fracture than row-rise IMF systems and, the actual response isfound to compared tothedesign drift ratio acting on design load design. Finally, the minimum design load values are proposed to meet the seismic performance suggested in FEMA 695 for IMF systems having vulnerable seismic performance.

복열테이퍼 롤러베어링 지지특성에 따른 오버헝 회전축 시스템의 동적 거동 예측 및 접촉부 압력 해석 (Prediction of the Dynamic behavior and Contact Pressure of Overhung Rotor Systems According to the Support Characteristics of Double-row Tapered Roller Bearings)

  • 김태우;서준호;김민수;유용훈
    • Tribology and Lubricants
    • /
    • 제39권4호
    • /
    • pp.154-166
    • /
    • 2023
  • This study establishes a numerical analysis model of the finite element overhung rotor supported by a DTRB and describes the stiffness properties of the DTRB. The vibration characteristics and contact pressure of the RBR system are predicted according to the DTRB support characteristics such as the initial axial compression and roller profile. The stiffness of the DTRB significantly varies depending on the initial axial compression and external load owing to the occurrence of rollers under the no-load condition and increase in the Hertz contact force. The increase in the initial axial compression increases the rigidity of the DTRB, thereby reducing the displacement of the RBR system and simultaneously increasing the natural frequency. However, above a certain initial axial compression, the effect becomes insignificant, and an excessive increase in the initial axial compression increases the contact pressure. The roller crowning radius, which gives a curvature in the longitudinal direction of the roller, decreases the displacement of the RBR system and increases the natural frequency as the value increases. However, an increase in the crowning radius increases the edge stress, causing a negative effect in terms of the contact pressure. These results show that the DTRB support characteristics required for reducing the vibration and contact pressure of the RBR system supported by the DTRB can be designed.

극저온 정압 저널베어링의 성능해석에 관한 연구 : 난류유동, 압력강하, 가변 밀도 및 점도의 영향 (A Study on Performance Analysis of Cryogenic Hydrostatic Journal Bearings : the Effects of Turbulent Flow, Pressure Drop and Variable Liquid Properties)

  • 김성기;강지훈;김경웅
    • Tribology and Lubricants
    • /
    • 제19권3호
    • /
    • pp.139-145
    • /
    • 2003
  • In this paper, static characteristics of a cryogenic hydrostatic journal bearing which has 2-rows staggered recesses are numerically analyzed. The regime of operation of this bearing is fully turbulent with large fluid inertia effects. The turbulent lubrication equation is solved under the assumption that turbulence parameters are decided by the Reynolds numbers. Pressure drop caused by inertia effect at the recess edge is considered in this analysis. Also density and viscosity of working fluid are considered as function of only pressure. Numerical results for a cryogenic Hydrostatic journal bearing show pressure distribution, load capacity, flow rate, and recess pressure. The effects of turbulent flow, pressure drop and variable liquid properties are discussed.

성토지지말뚝에 작용하는 연직하중에 대한 모형실험 (Model Tests for Vertical Loads Acting on Embankment Piles)

  • 홍원표;강승인
    • 한국지반공학회논문집
    • /
    • 제16권4호
    • /
    • pp.171-181
    • /
    • 2000
  • 성토지지말뚝 상부의 성토지반내에서 발생되는 지반아칭효과에 의하여 성토하중이 말뚝에 전달되는 효과를 조사하면서 제안된 이론해석의 신뢰성을 확인하기 위하여 일련의 모형실험을 수행하였다. 본 모형실험에서 말뚝은 성토 아래에 일렬로 수열의 줄말뚝으로 설치하였으며, 말뚝캡보는 성토의 길이방향에 직각방향으로 말뚝두부에 설치하였다. 성토재의 하중전달에 가장 큰 영향을 미치는 요인으로는 말뚝캡보사이의 간격과 성토고를 들 수 있다. 이전의 이론적인 연구에 의해 제안된 지반아치의 반경보다 약 33%정도 큰 최소소요성토고보다 높게 성토를 실시할 경우 지반아치는 완벽하게 발생될 뿐만 아니라, 실험치와 이론치는 잘 일치함을 모형실험결과 확인할 수 있다. 모형말뚝캡보에 작용하는 성토하중의 분담률은 말뚝캡보사이의 간격이 증가함에 따라 감소하는 반면, 성토고가 높아짐에 따라 증가하였다. 따라서, 설계시 말뚝의 성토하중지지효과를 극대화시키기 위해서는 성토고를 충분히 높게한 상태에서 말뚝캡보의 간격비를 감소시켜야 한다. 여기서 말뚝캡보의 간격비를 감소시키려면 말뚝캡보사이의 간격을 감소시키거나 말뚝캡보의 폭을 증가시켜야 한다.

  • PDF

수정 제분행렬 재 인수화법 (Modified Partial Matrix Refactorization)

  • 강기문;지용량
    • 대한전기학회논문지
    • /
    • 제37권11호
    • /
    • pp.753-761
    • /
    • 1988
  • Partial Matrix Refactorization (PR) has been available for refactorization repeatedly. But this paper aims to present Modified PR(MPR), which is faster in (re) factorization speed and simpler in program than PR, but storage is almost as big as that of PR. MPR substitutes refactorization process of PR1 for Modifide Trifactortzation (MT) and, instead of PR 2, adds to PR1 the algoritm that calculates modified element values of modified row / cols. MT, which is subalgorithm for MPR, simplifies the algorithm by applying information vectors to currently used Trifactorization, and trifactorizes and refactorizes in high speed. The test results of Fast Decoupled Load Flow (FDLF) and Contingency Analysis useing Indexing Scheme and Optimal Ordering also prove that MPR is faster than PR.

  • PDF