• Title/Summary/Keyword: Load Ratio Method

Search Result 1,217, Processing Time 0.038 seconds

mprovement of Estimation Method of Load Capture Ratio for Design and Evaluation of Bio-retention LID Facility (생태저류지 LID 시설의 설계 및 평가를 위한 삭감대상부하비 산정방법 개선)

  • Choi, Jeonghyeon;Lee, Okjeong;Kim, Yongseok;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.6
    • /
    • pp.569-578
    • /
    • 2018
  • To minimize the negative alterations in hydrologic and water quality environment in urban areas due to urbanization, Low Impact Development (LID) techniques are actively applied. In Korea, LID facilities are classified as Non-point Pollution Reduction Facilities (NPRFs), and therefore they are evaluated using the performance evaluation method for NPRFs. However, while LID facilities are generally installed in small, distributed configuration and mainly work with the infiltration process, the existing NPRFs are installed on a large scale and mainly work with the reservoir process. Therefore, some limitations are expected in assessing both facilities using the same method as they differ in properties. To solve these problems, in this study, a new method for performance evaluation was proposed with focus on bio-retention LID facilities. EPA SWMM was used to reproduce the hydrologic and water quality phenomena in study area, and SWMM-LID module used to simulate TP interception performance by installing a bio-retention cell under various conditions through long-term simulations. Finally, an empirical formula for Load Capture Ratio (LCR) was derived based on storm water interception ratio in the same form as the existing method. Using the existing formula in estimating the LCR is likely to overestimate the performance of interception for non-point pollutants in the extremely low design capacity, and also underestimate it in the moderate and high design capacity.

Load test of wheel-set for derailment coefficient measurement that have plane style wheel plate (평면형 차륜 형상을 가진 탈선계수 측정용 윤축의 하중시험)

  • Ham Young-Sam;Hong Jai-Sung
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.228-233
    • /
    • 2004
  • A derailment coefficient of railway vehicle is as one of important element that estimate running safety. Derailment coefficient is ratio of lateral load/vertical load happens in contact point between wheel and rail. Lateral load increases, dangerous of derailment can rise. There are ground and vehicle to measurement method of these derailment coefficient. Method of ground is simple, but when vehicles passes data of a point, there is shortcoming that acquire locally. Curved surface style wheel shape that use so far among vehicle method in this research wishes to be not but describe about static load test of wheel-set for derailment coefficient measurement that have plane plate shape that manufacture separate way and correction result etc. to test.

  • PDF

Cyclic tests and numerical study of composite steel plate deep beam

  • Hu, Yi;Jiang, Liqiang;Zheng, Hong
    • Earthquakes and Structures
    • /
    • v.12 no.1
    • /
    • pp.23-34
    • /
    • 2017
  • Composite steel plate deep beam (CDB) is proposed as a lateral resisting member, which is constructed by steel plate and reinforced concrete (RC) panel, and it is connected with building frame through high-strength bolts. To investigate the seismic performance of the CDB, tests of two 1/3 scaled specimens with different length-to-height ratio were carried out under cyclic loads. The failure modes, load-carrying capacity, hysteretic behavior, ductility and energy dissipation were obtained and analyzed. In addition, the nonlinear finite element (FE) models of the specimens were established and verified by the test results. Besides, parametric analyses were performed to study the effect of length-to-height ratio, height-to-thickness ratio, material type and arrangement of RC panel. The experimental and numerical results showed that: the CDBs lost their load-carrying capacity because of the large out-of plane deformation and yield of the tension field formed on the steel plate. By increasing the length-to-height ratio of steel plate, the load-carrying capacity, elastic stiffness, ductility and energy dissipation capacity of the specimens were significantly enhanced. The ultimate loading capacity increased with increasing the length-to-height ratio of steel plate and yield strength of steel plate; and such capacity increased with decreasing of height-to-thickness ratio of steel plate and gap. Finally, a unified formula is proposed to calculate their ultimate loading capacity, and fitting formula on such indexes are provided for designation of the CDB.

A Study on the Shape Optimization of a Cutout Using Evolutionary Structural Optimization Method (진화 구조 최적화 기법을 이용한 개구부의 형상 최적화에 관한 연구)

  • 류충현;이영신
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.369-372
    • /
    • 2000
  • ESO(Evolutionary Structural Optimization) method is known that elements involved low stress value are removed from the previous model or that elements are added around elements involved high stress level on it and then the optimized model is obtained with required weight. Rejection ratio/addition ratio and evolutionary ratio are predefined and elements having lower/higher stress than reference stress, which average Mises stress on edge elements times rejection ratio, are deleted/added. In this study, when the plate having a cutout is subjected various in-plane load, a cutout shape is optimized using ESO method. ANSYS is used to analyse a finite element model and optimization procedure is made by APDL (ANSYS Parametric Design Language). ESO method is useful in rather than a complex structure optimization as well as a cutout shape optimization.

  • PDF

Automatic Diagnosis for Stator Winding Faults Using Distortion Ratio (왜곡률을 이용한 고정자 권선고장 자동진단)

  • Song, Myung-Hyun;Park, Kyu-Nam;Han, Dong-Gi;Yang, Chul-Oh
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.358-360
    • /
    • 2007
  • In this paper, an auto-diagnosis method of the stator winding fault for small induction motor is suggested. 3-phase stator currents are sampled, filtered, and transformed with Park's vector transformation. After then Park's vector patterns are obtained. To detect the stator winding fault automatically, a distortion ratio (id/iq) is newly defined and compared with the one of healthy motor, and the threshold levels are suggested. The 2-turn, 4-turn, 8-turn winding fault are tested with no load, 25%, 50%, 75%, and 100% rated load. The distortion ratio of the Park's vector patterns are increased as the increase of the faulted turns, but are same as the increase of the load.

  • PDF

Damage Curves of the Fixed Ends Beam with the Rigid-Plastic Model (강-소성 모델을 이용한 양단 고정보의 손상곡선)

  • Kim, Seok Ki
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.4
    • /
    • pp.239-246
    • /
    • 2004
  • The fixed ends beam is analyzed by the s d 0 f system with the rigid-plastic model. And the safety criteria of the fixed ends beam to the Impulsive loads are established with the peak-load ratio to the static collapse load and impulse ratio to the ideal impulse producing the critical displacement. It is shown that the impulse and the peak-load of the impulsive loads are the important factors for the damage of the structures. It is also shown that the damage curves with the peak-load and impulse ratio are useful method to estimate the damage of the structures due to the emphasis on the equivalent dynamic loads rather than the equivalent static loads in the process of deriving the curve.

Damage Curves of the Simple Beam under the Impulsive loadings (충격하중에 의한 단순보의 손상곡선)

  • Lee, Sang-Ho;Ryu, Yong-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.1
    • /
    • pp.157-164
    • /
    • 2004
  • The safety criteria for the simple beam with a rigid-plastic model under the impulsive loadings are established with the peak-load ratio to the static collapse load and impulse ratio to the ideal impulse producing the plastic hinge at the mid-span. It is shown that the impulse and peak-load of the impulsive loadings are the important factors for the damage of the structures. It is also shown that the damage curves with the peak-load and impulse ratio may be useful method to estimate the damage of the structures due to the emphasis on the equivalent dynamic loads rather than the equivalent static loads in the process of deriving the curve.

Behavior of Lateral Earth Pressure around the Underpass Constructed by the STS Construction Method

  • Jin, Kyu-Nam;Kim, Hyo-Jin;Sim, Young-Jong
    • Land and Housing Review
    • /
    • v.7 no.4
    • /
    • pp.271-279
    • /
    • 2016
  • Recently developed trenchless construction methods ensure stability for the ground settlement by inserting steel pipes along the underpass section and integrating steel pipes before ground excavation to form pipe-roof. This study is to confirm the reinforcing effect of pipe-roof by measuring lateral earth pressure acting on the underpass constructed by the STS (Steel Tube Slab) construction method. For this purpose, lateral earth pressure was measured at the left and right side of the pipe-roof after installing earth pressure cells. As a result, lateral earth pressure was measured with considerable reduction because the integrated pipe-roof shared surcharge. Therefore, economic design for the underpass could be expected by sharing design load by pipe-roof. In addition, construction cost was analyzed according to the design-load sharing ratio by pipe-roof. As pipe-roof shares design load by 40%, the total construction cost can decrease by almost 10% in the case of four-lane underpass.

A Study on the Pulse Peak Voltage and Cascading Ratio of Compact Pulse Generator using Cascading Method (Cascading 방식을 적용한 펄스발생기의 펄스전압 변성 및 Cascading 비율 특성)

  • Joung, Jong-Han;Kim, Hee-Je
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.7
    • /
    • pp.329-333
    • /
    • 2001
  • The pulsed poser system has been widely used to many applications, such as E/P(Electrostatic Precipitator), DeNox/DeSOx power system, ozon generator, etc. A pulse energy efficiency for load depends on the rising time, peak value, pulse duration and impedance matching, etc. The pulse generator generally required for short pusle duration and high peak value was forced to consider its volume and economy. In this study, developing a compact pulse generator that applied for cascading method to be made of two pulse transformers, we compared cascading voltage with non cascading one by applying the pulse energy to load. Adopting cascading technique to pulse transformer, we found that average cascading voltage was about 60[%] of theoretical value. Maximum cascading ratio was calculated at 60 times compared with non cascading voltage.

  • PDF

Prediction of Fracture Energy of Concrete

  • Oh, Byung-Hwan;Jang, Seung-Yup;Byun, Hyung-Kyun
    • KCI Concrete Journal
    • /
    • v.11 no.3
    • /
    • pp.211-221
    • /
    • 1999
  • A method to determine the fracture energy of concrete is investigated. The fracture energy may be calculated from the area under the complete load-deflection curve which can be obtained from a stable three-point bend test. Several series of concrete beams have been tested. The Present experimental study indicates that the fracture energy decreases as the initial notch-to-beam depth ratio increases Some problems to be observed to employ the three-point bend method are discussed. The appropriate ratio of initial notch-to-beam depth to determine the fracture energy of concrete is found to be 0.5. It is also found that the influence of the self-weight of a beam to the fracture energy is very small A simple and accurate formula to predict the fracture energy of concrete is proposed.

  • PDF