• Title/Summary/Keyword: Load Properties

Search Result 2,791, Processing Time 0.033 seconds

Step-down Piezoelectric Transformer Using PZT PMNS Ceramics

  • Lim Kee-Joe;Park Seong-Hee;Kwon Oh-Deok;Kang Seong-Hwa
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.3
    • /
    • pp.102-110
    • /
    • 2005
  • Piezoelectric transformers(PT) are expected to be small, thin and highly efficient, and which are attractive as a transformer with high power density for step down voltage. For these reasons, we have attempted to develop a step-down PT for the miniaturized adaptor. We propose a PT, operating in thickness extensional vibration mode for step-down voltage. This PT consists of a multi-layered construction in the thickness direction. In order to develop the step-down PT of 10 W class and turn ratio of 0.1 with high efficiency and miniaturization, the piezoelectric ceramics and PT designs are estimated with a variety of characteristics. The basic composition of piezoelectric ceramics consists of ternary yPb(Zr$_{x}$Ti$_{1-x}$)O$_{3}$-(1-y)Pb(Mn$_{1/3}$Nb1$_{1/3}$Sb$_{1/3}$)O$_{3}$. In the piezoelectric characteristics evaluations, at y=0.95 and x=0.505, the electromechanical coupling factor(K$_{p}$) is 58$\%$, piezoelectric strain constant(d$_{33}$) is 270 pC/N, mechanical quality factor(Qr$_{m}$) is 1520, permittivity($\varepsilon$/ 0) is 1500, and Curie temperature is 350 $^{\circ}C$. At y = 0.90 and x = 0.500, kp is 56$\%$, d33 is 250 pC/N, Q$_{m}$ is 1820, $\varepsilon$$_{33}$$^{T}$/$\varepsilon$$_{0}$ is 1120, and Curie temperature is 290 $^{\circ}C$. It shows the excellent properties at morphotropic phase boundary regions. PZT-PMNS ceramic may be available for high power piezoelectric devices such as PTs. The design of step-down PTs for adaptor proposes a multi-layer structure to overcome some structural defects of conventional PTs. In order to design PTs and analyze their performances, the finite element analysis and equivalent circuit analysis method are applied. The maximum peak of gain G as a first mode for thickness extensional vibration occurs near 0.85 MHz at load resistance of 10 .The peak of second mode at 1.7 MHz is 0.12 and the efficiency is 92$\%$.

Cyclic fatigue resistance, torsional resistance, and metallurgical characteristics of M3 Rotary and M3 Pro Gold NiTi files

  • Pedulla, Eugenio;Lo Savio, Fabio;La Rosa, Giusy Rita Maria;Miccoli, Gabriele;Bruno, Elena;Rapisarda, Silvia;Chang, Seok Woo;Rapisarda, Ernesto;La Rosa, Guido;Gambarini, Gianluca;Testarelli, Luca
    • Restorative Dentistry and Endodontics
    • /
    • v.43 no.2
    • /
    • pp.25.1-25.10
    • /
    • 2018
  • Objectives: To evaluate the mechanical properties and metallurgical characteristics of the M3 Rotary and M3 Pro Gold files (United Dental). Materials and Methods: One hundred and sixty new M3 Rotary and M3 Pro Gold files (sizes 20/0.04 and 25/0.04) were used. Torque and angle of rotation at failure (n = 20) were measured according to ISO 3630-1. Cyclic fatigue resistance was tested by measuring the number of cycles to failure in an artificial stainless steel canal ($60^{\circ}$ angle of curvature and a 5-mm radius). The metallurgical characteristics were investigated by differential scanning calorimetry. Data were analyzed using analysis of variance and the Student-Newman-Keuls test. Results: Comparing the same size of the 2 different instruments, cyclic fatigue resistance was significantly higher in the M3 Pro Gold files than in the M3 Rotary files (p < 0.001). No significant difference was observed between the files in the maximum torque load, while a significantly higher angular rotation to fracture was observed for M3 Pro Gold (p < 0.05). In the DSC analysis, the M3 Pro Gold files showed one prominent peak on the heating curve and 2 prominent peaks on the cooling curve. In contrast, the M3 Rotary files showed 1 small peak on the heating curve and 1 small peak on the cooling curve. Conclusions: The M3 Pro Gold files showed greater flexibility and angular rotation than the M3 Rotary files, without decrement of their torque resistance. The superior flexibility of M3 Pro Gold files can be attributed to their martensite phase.

Nonlinear Behavior of Seismic-Strengthened Domestic School Building (국내 기존 학교건축물의 내진보강 후 비선형 거동특성)

  • Ryu, Seung Hyun;Yun, Hyun Do;Kim, Sun Woo;Lee, Kang Seok;Kim, Yong Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.1
    • /
    • pp.243-253
    • /
    • 2011
  • This paper describes an analytical study on seismic performance of domestic reinforced concrete (RC) school building not designed by seismic provision. The seismic index and the seismic performance of the building were evaluated through Japanese standard and Midas Gen, respectively. Seismic index (Is) of the RC school buildings in the X-direction is below 0.4. Based on the seismic index, for seismic-strengthening the building, infill shear wall or steel brace with a capacity of 1,300 kN was used. According to nonlinear static analysis results, the contribution of the seismic-strengthening to the shear resistance of the school building was measured to be greater than 30%. However, as expected, shear strength of school building strengthened with infill wall dropt rapidly after peak load and much narrower ductile behavior range was observed compared to steel brace strengthened building. Also, the building strengthened with steel brace showed 30% larger spectral displacement than that strengthened with infill shear wall. In nonlinear dynamic analysis, for the time history analysis, the maximum displacement showed tendency to decrease as amount of reinforcement increased, regardless of strengthening method. It was recommended that variable soil properties and earthquake record should be considered for improving seismic performance of buildings in seismic zone.

FINITE ELEMENT STRESS ANALYSIS OF A CLASS II COMPOSITE RESIN RESTORATION (2급 와동의 복합레진 충전에 관한 유한요소법적 응력분석)

  • Song, Bo-Kyung;Um, Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.20 no.2
    • /
    • pp.627-643
    • /
    • 1995
  • The resistance to fracture of the restored tooth may be influenced by many factors, among these are the cavity dimension and the physical properties of the restorative material. The placement of direct composite resin restorations has generally been found to have a strengthening effect on the prepared teeth. It is the purpose of this investigation to study the relationship between the cavity isthmus and the fracture resistance of a tooth in composite resin restorations. In this study, MO cavity was prepared on the maxillary left first molar and then filled with composite resin. Three dimentional model with 3049 nodes and 2450 8-node blick elements was made by the serial photographic method and isthmus (1/4, 1/3, 1/2 and 2/3 of intercusplal distance between mesiobuccal cusp tip and mesiolingual cusp tip) was varied. Two types of model(B and R model) were developed. B model was assumed perfect bonding between the restoration and cavity wall and R model was left unfilled. A load of 1500N was applied vertically on the node from the lingual slope of the mesiobuccal cusp. The results were as follows : 1. There was a significant decrease of stress resulting in increase of fracture resistance in B model when compared with R model. 2. When it comes to stress distribution, the stress was concentrated in the facio-gingival line angle and the buccal side of the distal margin of the cavity in both Band R model. 3. With the increase of the isthmus width, the stress decreased in the area of the facio-gingival line angle, and increased in the area of facio-gingival line angle as well as the buccal side of the distal margin of the cavity in B model. In R model, the stress increased both in the area of facio-gingival line angle and the buccal side of the distal margin of the cavity, therefore the possibility of crack increased. 4. As the width of cavity increased, in B model, the direction of crack moved from horizontal to vertical on the facio-gingival line angle and the facio-pulpal line angle. In R model, the direction of the crack was horizontal on the facio-gingival line angle and moved from horizontal to the $45^{\circ}$ direction on the facio-pulpal line angle.

  • PDF

Design of a On-chip LDO regulator with enhanced transient response characteristics by parallel error amplifiers (병렬 오차 증폭기 구조를 이용하여 과도응답특성을 개선한 On-chip LDO 레귤레이터 설계)

  • Son, Hyun-Sik;Lee, Min-Ji;Kim, Nam Tae;Song, Han-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.9
    • /
    • pp.6247-6253
    • /
    • 2015
  • This paper presents the transient-response improved LDO regulator based on parallel error amplifiers. The proposed LDO regulator consists of an error amplifier (E/A1) which has a high gain and narrow bandwidth and a second amplifier (E/A2) which has low gain and wide bandwidth. These amplifiers are in parallel structure. Also, to improve the transient-response properties and slew-rate, some circuit block is added. Using pole-splitting technique, an external capacitor is reduced in a small on-chip size which is suitable for mobile devices. The proposed LDO has been designed and simulated using a Megna/Hynix $0.18{\mu}m$ CMOS parameters. Chip layout size is $500{\mu}m{\times}150{\mu}m$. Simulation results show 2.5 V output voltage and 100 mA load current in an input condition of 2.7 V ~ 3.3 V. Regulation Characteristic presents voltage variation of 26.1 mV and settling time of 510 ns from 100mA to 0 mA. Also, the proposed circuit has been shown voltage variation of 42.8 mV and settling time of 408 ns from 0 mA to 100 mA.

Analysis of Trench Slope Stability in Permafrost Regions According to the Vertical and Horizontal Angle of Slope (동토지반에서 종방향 및 횡방향 사면의 경사에 따른 트렌치 안전성 분석)

  • Kim, Jong-Uk;Kim, Jung-Joo;Jafri, Turab H.;Yoo, Han-Kyu
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.1
    • /
    • pp.27-33
    • /
    • 2017
  • In this study, the stability of trench slope was analysed in summer and winter seasons for the construction of pipelines in permafrost regions. The construction standards of Korea, Russia and UK were compared for obtaining an optimum trench shape for a pipeline of 30 in. diameter. Using the geotechnical properties of soil in Yakutsk (Russia), the stability of trench slope was analysed using Strength Reduction Method (SRM) according to the horizontal slope angle values of $0^{\circ}$, $10^{\circ}$, $20^{\circ}$ and $30^{\circ}$ and vertical slope angle values of $20^{\circ}$, $30^{\circ}$ and $40^{\circ}$. In both seasons, an increase in the slope angle results in a decrease in the factor of safety. The results show that horizontal slope angle of $30^{\circ}$ was not safe in summer season. At the vertical slope angle of $20^{\circ}$, trench side failure was observed, whereas, ground slope failure was observed at the vertical slope angles of $30^{\circ}$ and $40^{\circ}$. Due to the solidification of pore water at temperatures below $0^{\circ}C$, cementation of soil particles take place. Therefore, the trench slope was found to be stable in the winter season at all vertical and horizontal slop angles, except for special load cases and abrupt temperature changes.

Analysis of Mechanical Properties and Stress Crack Behavior of HOPE Geomembranes by Laboratory Installation Damage Test (실내 시공시 손상시험에 의한 HDPE 지오멤브레인의 기계적 특성 및 응력균열거동 해석)

  • Khan, Belas Ahmed;Park, Ju-Hee;Kim, Sung-Hee;Chang, Yong-Chai;Oh, Tae-Hwan;Lyoo, Won-Seok;Jeon, Han-Yong
    • Polymer(Korea)
    • /
    • v.35 no.3
    • /
    • pp.203-209
    • /
    • 2011
  • Two smooth and textured surfaced HDPE geomembranes (GMs) were cut into dumbbell shape and notched where depth of the notch produced a ligament thickness of 10% to 90% of the nominal thickness with the specimen at 10% interval. A series of laboratory simulation test for installation damage were carried out at different loading cycles on HDPE GMs in accordance with ISO 10722 test method and the effect of number of loading cycle on installation damage was compared. It was found that yield stress and elongation at yield point decreased gradually as the notch depth was increased. Both installation damaged and notched, GMs were used to understand stress crack behavior and this behavior was observed through NCTL test at $50{\pm}1^{\circ}C$ at different yield stresses immerging in pH 4 and pH 12 buffer solutions. Over 35% tensile load, GMs became vulnerable to stress cracking. Both damaged and notched GMs showed the same trend. Especially, notched GMs showed less strength than installation damaged GMs at every stress cracking test condition.

Analysis of Apparatus Variables for Deformation Strength Test of Asphalt Concrete Based on Correlation with Rutting and Prediction Model for Rutting (소성변형과의 상관성 및 추정모델을 통한 변형강도 시험장치 변수 분석)

  • Kim, Kwang-Woo;Lee, Moon-Sup;Kim, Sung-Tae;Lee, Soon-Jae
    • International Journal of Highway Engineering
    • /
    • v.4 no.4 s.14
    • /
    • pp.41-52
    • /
    • 2002
  • This study dealt with analysis of size effect of testing apparatus for Kim test which measures rut resistance characteristics of asphalt mixture under static loading. Two columns in different diameter with each column having different radios of round cut (Curvature) at the bottom were used for testing asphalt mixture. Deformation load ($P_{max}$) and deformation strength ($K_D$) were found to have relatively high correlation with rut depth and dynamic stability of asphalt concrete. Diameter of specimen was not a significant factor in this test. From the statistical correlation analysis with rutting properties, the radius of curvature and diameter of loading column were found to be important factor affecting the results of the test. Among the radios (r) of curvatures, r=0.5cm and 1.0cm showed much higher correlation than the column without curvature, and r=1.0cm being better between the two. The column with diameter of 4cm showed better correlation than diameter of 3cm. Therefore, the column of 4cm diameter with r=1.0cm was found to be the best among various apparatus sizes. Prediction models for rut depth and dynamic stability were developed for each aggregate mixture based on Kim test variables using SAS STEPWISE procedure. Therefore, if this test method is validated through further study, Kim test can be used for selecting asphalt mixture with the highest resistance against permanent deformation.

  • PDF

Flow properties of thermoplasticized Gutta Percha obturation materials (열가소성 가타퍼차 근관충전재료의 흐름성 특성)

  • Baek, Myong-Hyun;Song, Bu-Seok;Choi, Eun-Mi
    • Korean Journal of Dental Materials
    • /
    • v.45 no.4
    • /
    • pp.311-320
    • /
    • 2018
  • The purpose of this study is to evaluate the flow ability of the thermoplasticized Gutta Percha in different temperatures. Four Gutta Percha products were classified by its hardness (soft, medium, and hard) and were experimented by the Rheometer (Melt flow indexer MFI-10, DAVENPORT, England) measuring apparatus, in $(23{\pm}2)^{\circ}C$, and in a relative humidity of ($50{\pm}5$) %, following the guidelines of ISO 1133-1:2011. The heating temperature ranged from $108^{\circ}C$, $160^{\circ}C$ to $200^{\circ}C$, and the load at 2.16 kg and 3.8 kg. The Gutta Percha was cut in 5 mm to be suitable for the rheometer pressurization process. After the experiment was conducted with a preheating time of 5 minutes, a cutting time of 5-240 seconds, and a sample of 10 grams, the Gutta Percha did not show any changes in fluidity for $108^{\circ}C$, $160^{\circ}C$, but showed a change in its flow ability in $200^{\circ}C$. Also, the Gutta Percha did not show any changes in its fluidity when it was pressurized by 2.16 and 3.8 kilograms. Therefore, this experiment shows that the heating temperature and the cut-off time showed a significance while measuring the melt flow rate.

A Study on the Evaluation Method to Flexural-bonding Behavior of FRP-Rebar Concrete Member (FRP를 보강근으로 사용한 콘크리트 부재의 휨-부착 거동 평가방법에 관한 연구)

  • Choi, So-Yoeng;Choi, Myoung-Sung;Kim, Il-Sun;Yang, Eun-Ik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.149-156
    • /
    • 2021
  • FRP has been proposed to replace the steel as a reinforcement in the concrete structures for addressing the corrosion issue. However, FRP-Rebar does not behave in the same manner as steel because the properties of FRP are different. For example, FRP-Rebar has a high tensile strength, low stiffness, and linear elastic behavior which results in a difference bonding mechanism to transfer the load between the reinforcement and the surrounding concrete. Therefore, bonding behavior between FRP-Rebar and concrete has to be investigated using the bonding test. So, Pull-out test has been used to estimate bond behavior because it is simple. However, the results of pull-out test have a difference with flexural-boding behavior of FRP-Rebar concrete member. So, it is needed to evaluate the real fleuxral-bonding behavior. In this study, the evaluation method to flexural-bonding behavior of FRP-Rebar concrete member was reviewed and compared. It was found that the most accurate evaluation method for the fleuxral-bonding behavior of FRP-Rebar concrete member was splice beam test, however, the size and length of specimen have to increase than other test method and the design and analysis of splice beam is complex. Meanwhile, characteristics of concrete could be reflected by using arched beam test, unlike hinged beam test which is based on the ignored change of moment arm length in equilibrium equation. However, the possibility of shear failure exists before the flexural-bonding failure occur.