• 제목/요약/키워드: Load Capacity Coefficient

검색결과 177건 처리시간 0.025초

Stress-related energy dissipation and damping model of concrete considering moisture content

  • Liu, Baodong;Zhang, Pengyuan;Lyu, Wenjuan
    • Advances in concrete construction
    • /
    • 제13권6호
    • /
    • pp.423-431
    • /
    • 2022
  • Although the influence of moisture content on the mechanical properties of concrete has been studied for a long time, research related to its influence on the damping and energy dissipation property of concrete structure is still very limited. In this paper, the relationship between damping property and moisture content of concrete using cyclic uniaxial compression is firstly presented, and the mechanism of the influence of moisture content on concrete damping and energy dissipation capacity is analyzed. Based on the experimental research, moisture-related damping and energy dissipation model is proposed. Results show that the dissipated energy of concrete and loss factor increase as the moisture content increasing. The energy dissipation coefficient reflecting the influence of stress level of concrete under cyclic load, decreases first and then increases as the moisture content increasing. The mechanism of moisture-related energy dissipation behavior can be divided into the reactive force of water, the development of the internal micro cracks and the pore water pressure. Finally, the proposed moisture-related damping and energy dissipation model are verified.

An experimental study on fire resistance of medical modular block

  • Kim, Hyung-Jun;Lee, Jae-Sung;Kim, Heung-Youl;Cho, Bong-Ho;Xi, Yunping;Kwon, Ki-Hyuck
    • Steel and Composite Structures
    • /
    • 제15권1호
    • /
    • pp.103-130
    • /
    • 2013
  • Fire performance and fire safety of high-rise buildings have become major concerns after the disasters of World Trade Center in the U.S. in 2001 and Windsor tower in Spain in 2005. Performance based design (PBD) approaches have been considered as a better method for fire resistance design of structures because it is capable of incorporating test results of most recent fire resistance technologies. However, there is a difficulty to evaluate fireproof performance of large structures, which have multiple structural members such as columns, slabs, and walls. The difficulty is mainly due to the limitation in the testing equipment, such as size of furnace that can be used to carry out fire tests with existing criteria like ISO 834, BS 476, and KS F 2257. In the present research, a large scale calorie meter (10 MW) was used to conduct three full scale fire tests on medical modular blocks. Average fire load of 13.99 $kg/m^2$ was used in the first test. In the second test, the weighting coefficient of 3.5 (the fire load of 50 $kg/m^2$) was used to simulate the worst fire scenario. The flashover of the medical modular block occurred at 62 minutes in the first test and 12 minutes in the second test. The heat resistance capacity of the external wall, the temperatures and deformations of the structural members satisfied the requirements of fire resistance performance of 90 minutes burning period. The total heat loads and the heat values for each test are calculated by theoretical equations. The duration of burning was predicted. The predicted results were compared with the test results, and they agree quite well.

Bond slip modelling and its effect on numerical analysis of blast-induced responses of RC columns

  • Shi, Yanchao;Li, Zhong-Xian;Hao, Hong
    • Structural Engineering and Mechanics
    • /
    • 제32권2호
    • /
    • pp.251-267
    • /
    • 2009
  • Reinforced concrete (RC) structures consist of two different materials: concrete and steel bar. The stress transfer behaviour between the two materials through bond plays an important role in the load-carrying capacity of RC structures, especially when they subject to lateral load such as blast and seismic load. Therefore, bond and slip between concrete and reinforcement bar will affect the response of RC structures under such loads. However, in most numerical analyses of blast-induced structural responses, the perfect bond between concrete and steel bar is often assumed. The main reason is that it is very difficult to model bond slip in the commercial finite element software, especially in hydrodynamic codes. In the present study, a one-dimensional slide line contact model in LS-DYNA for modeling sliding of rebar along a string of concrete nodes is creatively used to model the bond slip between concrete and steel bars in RC structures. In order to model the bond slip accurately, a new approach to define the parameters of the one-dimensional slide line model from common pullout test data is proposed. Reliability and accuracy of the proposed approach and the one-dimensional slide line in modelling the bond slip between concrete and steel bar are demonstrated through comparison of numerical results and experimental data. A case study is then carried out to investigate the bond slip effect on numerical analysis of blast-induced responses of a RC column. Parametric studies are also conducted to investigate the effect of bond shear modulus, maximum elastic slip strain, and damage curve exponential coefficient on blast-induced response of RC columns. Finally, recommendations are given for modelling the bond slip in numerical analysis of blast-induced responses of RC columns.

Wind load and wind-induced effect of the large wind turbine tower-blade system considering blade yaw and interference

  • Ke, S.T.;Wang, X.H.;Ge, Y.J.
    • Wind and Structures
    • /
    • 제28권2호
    • /
    • pp.71-87
    • /
    • 2019
  • The yaw and interference effects of blades affect aerodynamic performance of large wind turbine system significantly, thus influencing wind-induced response and stability performance of the tower-blade system. In this study, the 5MW wind turbine which was developed by Nanjing University of Aeronautics and Astronautics (NUAA) was chosen as the research object. Large eddy simulation on flow field and aerodynamics of its wind turbine system with different yaw angles($0^{\circ}$, $5^{\circ}$, $10^{\circ}$, $20^{\circ}$, $30^{\circ}$ and $45^{\circ}$) under the most unfavorable blade position was carried out. Results were compared with codes and measurement results at home and abroad, which verified validity of large eddy simulation. On this basis, effects of yaw angle on average wind pressure, fluctuating wind pressure, lift coefficient, resistance coefficient,streaming and wake characteristics on different interference zone of tower of wind turbine were analyzed. Next, the blade-cabin-tower-foundation integrated coupling model of the large wind turbine was constructed based on finite element method. Dynamic characteristics, wind-induced response and stability performance of the wind turbine structural system under different yaw angle were analyzed systematically. Research results demonstrate that with the increase of yaw angle, the maximum negative pressure and extreme negative pressure of the significant interference zone of the tower present a V-shaped variation trend, whereas the layer resistance coefficient increases gradually. By contrast, the maximum negative pressure, extreme negative pressure and layer resistance coefficient of the non-interference zone remain basically same. Effects of streaming and wake weaken gradually. When the yaw angle increases to $45^{\circ}$, aerodynamic force of the tower is close with that when there's no blade yaw and interference. As the height of significant interference zone increases, layer resistance coefficient decreases firstly and then increases under different yaw angles. Maximum means and mean square error (MSE) of radial displacement under different yaw angles all occur at circumferential $0^{\circ}$ and $180^{\circ}$ of the tower. The maximum bending moment at tower bottom is at circumferential $20^{\circ}$. When the yaw angle is $0^{\circ}$, the maximum downwind displacement responses of different blades are higher than 2.7 m. With the increase of yaw angle, MSEs of radial displacement at tower top, downwind displacement of blades, internal force at blade roots all decrease gradually, while the critical wind speed decreases firstly and then increases and finally decreases. The comprehensive analysis shows that the worst aerodynamic performance and wind-induced response of the wind turbine system are achieved when the yaw angle is $0^{\circ}$, whereas the worst stability performance and ultimate bearing capacity are achieved when the yaw angle is $45^{\circ}$.

내진성능평가를 위한 다자유도 교량의 수정 비선형 등가정적해석법 (Modified Nonlinear Static Pushover Procedures of MDOF Bridgesfor Seismic Performance Evaluation)

  • 조창근;김영상;배수호
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제10권4호
    • /
    • pp.175-184
    • /
    • 2006
  • 다자유도의 교량에 횡방향 지진하중을 받는 경우, 교량의 내진성능설계 및 성능평가를 위한 두 가지 비선형 등가 정적해석절차를 제시하였다. 빌딩구조물에 대한 FEMA-273의 변위계수법과 ATC에서 채택하고 있는 역량스펙트럼법을 개선하여 다자유도 연속교량의 내진성능평가에 적용토록 제시하였다. 수정된 두 방법들에 대한 적합성을 시간이력 동적해석과 비교토록 하였다. 다자유도 교량의 교축직각방향 관성력 분포를 합리적으로 반영하기 위하여, 수평방향 지진하중의 분포형태에 따른 모드 및 스펙트럴 하중분포를 적용토록 하였다. 철근 콘크리트 교각 부재는 하중-기초법에 의한 비선형 층상화 골조 유한요소 모델을 사용하여 교량 구조물을 모델링 하였다.

범프들의 상호작용을 고려한 공기 포일 베어링의 구조적 강성 및 쿨롱 감쇠에 대한 연구 (A Study on the Structural Stiffness and Coulomb Damping of Air Foil Bearing Considering the Interaction among Bumps)

  • 이용복;박동진;김창호
    • Tribology and Lubricants
    • /
    • 제22권5호
    • /
    • pp.252-259
    • /
    • 2006
  • Air foil bearing supports the rotating journal using hydrodynamic force generated at thin air film. The bearing performances, stiffness, damping coefficient and load capacity, depend on the rotating speed and the performance of the elastic foundation, bump foil. The main focus of this study is to decide the dynamic performance of corrugated bump foil, structural stiffness and Coulomb damping caused by friction between bump foil and top foil/bump foil and housing. Structural stiffness is determined by the bump shape (bump height, pitch and bump thickness), dry-friction, and interacting force filed up to fixed end. So, the change of the characteristics was considered as the parameters change. The air foil bearing specification for analysis follows the general size; diameter 38.1 mm and length 38.1 mm (L/D=1.0). The results show that the stiffness at the fixed end is more than the stiffness at the free end, Coulomb damping is more at the fixed end due to the small displacement, and two dynamic characteristics are dependent on each other.

강체인 구와 DLC 코팅면 사이의 압입 및 미끄럼 접촉해석: 지지층 두께의 영향 (Indentation and Sliding Contact Analysis between a Rigid Ball and DLC-Coated Steel Surface: Influence of Supporting Layer Thickness)

  • 이준혁;박태조
    • Tribology and Lubricants
    • /
    • 제30권4호
    • /
    • pp.199-204
    • /
    • 2014
  • Various heat-treated and surface coating methods are used to mitigate abrasion in sliding machine parts. The most cost effective of these methods involves hard coatings such as diamond-like carbon (DLC). DLC has various advantages, including a high level of hardness, low coefficient of friction, and low wear rate. In practice, a supporting layer is generally inserted between the DLC layer and the steel substrate to improve the load carrying capacity. In this study, an indentation and sliding contact problem involving a small, hard, spherical particle and a DLC-coated steel surface is modeled and analyzed using a nonlinear finite element code, MARC, to investigate the influence of the supporting layer thickness on the coating characteristics and the related coating failure mechanisms. The results show that the amount of plastic deformation and the maximum principal stress decrease with an increase in the supporting layer thickness. However, the probability of the high tensile stress within the coating layer causing a crack is greatly increased. Therefore, in the case of DLC coating with a supporting layer, fatigue wear can be another important cause of coating layer failure, together with the generally well-known abrasive wear.

Nonlinear simulation of tunnel linings with a simplified numerical modelling

  • Zhao, Huiling;Liu, Xian;Bao, Yihai;Yuan, Yong
    • Structural Engineering and Mechanics
    • /
    • 제61권5호
    • /
    • pp.593-603
    • /
    • 2017
  • A high-efficiency simplified modelling approach is proposed for investigating the nonlinear responses of reinforced concrete linings of shield tunnels. Material and geometric nonlinearities are considered in the analysis of the lining structures undergoing large deformation before ultimately losing the load-carrying capacity. A beam-spring element model is developed to capture the force-transfer mechanism between lining segments and radial joints. The developed model is validated by comparing analyzed results to experimental results of a single-ring lining structure under two loading conditions: the ground overloading and the lateral unloading respectively. The results show that the lining structure under the lateral unloading due to excavation on the both sides of the tunnel is more vulnerable compared to the case of ground overloading on the top of the tunnel. A parameter study is conducted and results indicate that the lateral pressure coefficient has the greatest influence on the behaviour of the lining structure.

Behavior of circular thin-walled steel tube confined concrete stub columns

  • Ding, Fa-xing;Tan, Liu;Liu, Xue-mei;Wang, Liping
    • Steel and Composite Structures
    • /
    • 제23권2호
    • /
    • pp.229-238
    • /
    • 2017
  • This paper presents a combined numerical and theoretical study on the composite action between steel and concrete of circular steel tube confined concrete (STCC) stub columns under axial compressive loading with a full theoretical elasto-plastic model and finite element (FE) model in comparison with experimental results. Based on continuum mechanics, the elasto-plastic model for STCC stub columns was established and the analysis was realized by a FORTRAN program and the three dimensional FE model was developed using ABAQUS. The steel ratio of the circular STCC columns were defined in range of 0.5% to 2% to analyze the composite action between steel tube and concrete, and make a further study on the advantages of the circular STCC columns. By comparing the results using the elasto-plastic methods with the parametric analysis result of FE model, the appropriate friction coefficient between the steel tube and core concrete was defined as 0.4 to 0.6. Based on ultimate balance theory, the formula of ultimate load capacity applying to the circular STCC stub columns was developed.

범프들의 상호작용을 고려한 공기 포일 베어링의 구조적 강성 및 쿨롱 감쇠에 대한 연구 (A Study on the Structural Stiffness and Coulomb Damping of Air Foil Bearing Considering the Interaction among Bumps)

  • 박동진;김창호;이성철;이용복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.1135-1141
    • /
    • 2006
  • Air foil bearing supports the rotating journal using hydrodynamic force generated at thin air film. The bearing performance, stiffness, damping coefficient and load capacity, depends on the rotating speed and the performance of the elastic foundation, bump foil. The main focus of this study is to decide the dynamic performance of corrugated bump foil, structural stiffness and Coulomb damping caused by friction between bump foil and top foil/bump foil and housing. Structural stiffness is determined by the bump shape (bump height, pitch and bump thickness), dry-friction, and interacting force filed up to fixed end. So, the change of the characteristics was considered as the parameters change. The air foil bearing specification for analysis follows the general size; diameter 38.1 mm and length 38.1mm (L/D=1.0). The results show that the stiffness at the fixed end is more than the stiffness at the free end, Coulomb damping is more at the fixed end due to the small displacement, and two dynamic characteristics are dependent on each other.

  • PDF